Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (9): 2970-2982.DOI: 10.11772/j.issn.1001-9081.2022081261
• Multimedia computing and computer simulation • Previous Articles
Hanyu ZHANG1,2,3,4, Zhenbo LI1,2,3,4(), Weiran LI1,2,3,4, Pu YANG1,2,3,4
Received:
2022-08-25
Revised:
2022-10-27
Accepted:
2022-11-14
Online:
2023-01-11
Published:
2023-09-10
Contact:
Zhenbo LI
About author:
ZHANG Hanyu, born in 1999, M. S. candidate. Her research interests include computer vision, intelligent agriculture, image processing.Supported by:
张涵钰1,2,3,4, 李振波1,2,3,4(), 李蔚然1,2,3,4, 杨普1,2,3,4
通讯作者:
李振波
作者简介:
张涵钰(1999—),女,河南南阳人,硕士研究生,主要研究方向:计算机视觉、智慧农业、图像处理基金资助:
CLC Number:
Hanyu ZHANG, Zhenbo LI, Weiran LI, Pu YANG. Review of research on aquaculture counting based on machine vision[J]. Journal of Computer Applications, 2023, 43(9): 2970-2982.
张涵钰, 李振波, 李蔚然, 杨普. 基于机器视觉的水产养殖计数研究综述[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2970-2982.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022081261
采集设备 | 优点 | 缺点 | 常用代表 | 适用环境 |
---|---|---|---|---|
单目多光谱相机 | 简单快捷,成本低,容易操作,便于标定与识别,计数成本低 | 无法确定目标真实大小,不适用大量遮挡的目标群体数量统计 | CCD、CMOS | 水上环境、 水下环境 |
双目多光谱相机 | 降低目标群体遮挡对计数精度的影响 | 配置标定复杂,计算量较大,计数成本较高 | ||
单目近红外相机 | 成本低,适用于目标群体遮挡、黑暗复杂环境下的目标计数 | 视野小精度低,成像易受水面噪声和反光环境影响,进而影响计数精度 | ||
单目高光谱相机 | 图像信息丰富,适用于背景复杂环境,计数误差低 | 数据信息冗余,计算量较大,计数成本较高 | ||
声呐相机 | 有助于对结构复杂、浑浊黑暗的水下环境进行目标计数 | 成像分辨率较低,易受运动载体及环境噪声等因素影响,计算量较大,计数成本高 | ARIS、DIDSON、 SSS | 水下环境 |
Tab. 1 Comparison analysis of five common image acquisition devices
采集设备 | 优点 | 缺点 | 常用代表 | 适用环境 |
---|---|---|---|---|
单目多光谱相机 | 简单快捷,成本低,容易操作,便于标定与识别,计数成本低 | 无法确定目标真实大小,不适用大量遮挡的目标群体数量统计 | CCD、CMOS | 水上环境、 水下环境 |
双目多光谱相机 | 降低目标群体遮挡对计数精度的影响 | 配置标定复杂,计算量较大,计数成本较高 | ||
单目近红外相机 | 成本低,适用于目标群体遮挡、黑暗复杂环境下的目标计数 | 视野小精度低,成像易受水面噪声和反光环境影响,进而影响计数精度 | ||
单目高光谱相机 | 图像信息丰富,适用于背景复杂环境,计数误差低 | 数据信息冗余,计算量较大,计数成本较高 | ||
声呐相机 | 有助于对结构复杂、浑浊黑暗的水下环境进行目标计数 | 成像分辨率较低,易受运动载体及环境噪声等因素影响,计算量较大,计数成本高 | ARIS、DIDSON、 SSS | 水下环境 |
类型 | 计数方法 | 文献来源 | 提出年份 | 计数结果 | 品种 | 优点 | 缺点 |
---|---|---|---|---|---|---|---|
图像 处理 | 连通域面积法 | 文献[ | 2009 | 平均误差3.38% | 鱼苗 | 计数简单 | 易受高密度群体遮挡影响 |
文献[ | 2012 | 精度≥95% | 鱼苗 | ||||
端点细化法 | 文献[ | 2008 | 平均误差7.34% | 鱼苗 | 计数精度高 | 易忽略图像边缘目标数量 | |
文献[ | 2017 | 平均误差<6% | 鱼苗 | ||||
曲线演化法 | 文献[ | 2015 | 精度接近100% | 大菱鲆 | 能对遮挡较严重的鱼群计数 | 易受外部杂质影响 | |
模板匹配法 | 文献[ | 2012 | 精度97% | 虾苗 | 计数精度高 | 易受图像质量影响 | |
文献[ | 2014 | — | 扇贝 | ||||
分类检测法 | 文献[ | 2017 | 误差<人工6.9% | 太平洋白虾苗 | 计数精度高,目标群体遮挡影响低 | 计算量大 | |
文献[ | 2013 | 精度98.73% | 鱼苗 | ||||
视频 处理 | 分量关系法 | 文献[ | 2013 | 平均误差<10% | 鱼苗 | 计数简单 | 易受高密度群体遮挡影响 |
文献[ | 2018 | 精度≥96.64% | 孔雀鱼 | ||||
目标定位法 | 文献[ | 2015 | 召回率97.1% | — | 定位速率高,计数速度快 | 易受高密度群体遮挡影响 | |
目标跟踪法 | 文献[ | 2005 | 精度≥81% | — | 能在浑浊水下计数 | 多个目标轨迹交叉、跟踪ID切换影响计数 | |
文献[ | 2020 | 平均误差7.2% | — | ||||
文献[ | 2018 | 精度83% | 龙虾 |
Tab. 2 Comparison analysis of counting methods based on traditional machine learning
类型 | 计数方法 | 文献来源 | 提出年份 | 计数结果 | 品种 | 优点 | 缺点 |
---|---|---|---|---|---|---|---|
图像 处理 | 连通域面积法 | 文献[ | 2009 | 平均误差3.38% | 鱼苗 | 计数简单 | 易受高密度群体遮挡影响 |
文献[ | 2012 | 精度≥95% | 鱼苗 | ||||
端点细化法 | 文献[ | 2008 | 平均误差7.34% | 鱼苗 | 计数精度高 | 易忽略图像边缘目标数量 | |
文献[ | 2017 | 平均误差<6% | 鱼苗 | ||||
曲线演化法 | 文献[ | 2015 | 精度接近100% | 大菱鲆 | 能对遮挡较严重的鱼群计数 | 易受外部杂质影响 | |
模板匹配法 | 文献[ | 2012 | 精度97% | 虾苗 | 计数精度高 | 易受图像质量影响 | |
文献[ | 2014 | — | 扇贝 | ||||
分类检测法 | 文献[ | 2017 | 误差<人工6.9% | 太平洋白虾苗 | 计数精度高,目标群体遮挡影响低 | 计算量大 | |
文献[ | 2013 | 精度98.73% | 鱼苗 | ||||
视频 处理 | 分量关系法 | 文献[ | 2013 | 平均误差<10% | 鱼苗 | 计数简单 | 易受高密度群体遮挡影响 |
文献[ | 2018 | 精度≥96.64% | 孔雀鱼 | ||||
目标定位法 | 文献[ | 2015 | 召回率97.1% | — | 定位速率高,计数速度快 | 易受高密度群体遮挡影响 | |
目标跟踪法 | 文献[ | 2005 | 精度≥81% | — | 能在浑浊水下计数 | 多个目标轨迹交叉、跟踪ID切换影响计数 | |
文献[ | 2020 | 平均误差7.2% | — | ||||
文献[ | 2018 | 精度83% | 龙虾 |
计数方法 | 文献来源 | 提出年份 | 计数结果 | 品种 | 优点 | 缺点 | |
---|---|---|---|---|---|---|---|
ANN | 文献[ | 1995 | 精度接近94% | 鲻鱼 | 计数泛化性和准确性较好 | 易受高密度群体遮挡影响, 网络结构具有局限性 | |
文献[ | 2011 | 精度95% | 金鱼 | ||||
文献[ | 2020 | 平均误差29.8% | — | ||||
CNN | 图像分割法 | 文献[ | 2021 | 平均误差9.3% | 黑虎虾 | 计数精度较高, 可估计目标长度 | 易受高密度群体遮挡影响, 计数速度较低 |
文献[ | 2020 | 精度72.9%~99.7% | 白腿虾苗 | ||||
文献[ | 2020 | 召回率93.84% | — | ||||
目标检测法 | 文献[ | 2017 | 精度89.95% | 鱼苗 | 计数速度较快, 计数精度较高 | 易受高密度群体遮挡影响 | |
文献[ | 2019 | 精度99.17% | 鱼苗 | ||||
文献[ | 2017 | 平均精度86% | 扇贝 | ||||
文献[ | 2021 | 精度96.26% | — | ||||
目标跟踪法 | 文献[ | 2018 | — | 扇贝、海参 | 实用性较强 | 通用性较差 | |
文献[ | 2022 | 精度89% | 金枪鱼 | ||||
密度图回归法 | 文献[ | 2019 | 平均误差13.7% | 鲤鱼 | 可获取目标群体分布信息, 计数精度较高 | 密度图生成易受气泡、 光线等因素干扰 | |
文献[ | 2021 | 精度大于90% | 鱼苗 | ||||
文献[ | 2021 | 平均精度99.2% | 虾卵 | ||||
文献[ | 2022 | — | 鱼苗 |
Tab. 3 Comparison analysis of counting methods based on deep learning
计数方法 | 文献来源 | 提出年份 | 计数结果 | 品种 | 优点 | 缺点 | |
---|---|---|---|---|---|---|---|
ANN | 文献[ | 1995 | 精度接近94% | 鲻鱼 | 计数泛化性和准确性较好 | 易受高密度群体遮挡影响, 网络结构具有局限性 | |
文献[ | 2011 | 精度95% | 金鱼 | ||||
文献[ | 2020 | 平均误差29.8% | — | ||||
CNN | 图像分割法 | 文献[ | 2021 | 平均误差9.3% | 黑虎虾 | 计数精度较高, 可估计目标长度 | 易受高密度群体遮挡影响, 计数速度较低 |
文献[ | 2020 | 精度72.9%~99.7% | 白腿虾苗 | ||||
文献[ | 2020 | 召回率93.84% | — | ||||
目标检测法 | 文献[ | 2017 | 精度89.95% | 鱼苗 | 计数速度较快, 计数精度较高 | 易受高密度群体遮挡影响 | |
文献[ | 2019 | 精度99.17% | 鱼苗 | ||||
文献[ | 2017 | 平均精度86% | 扇贝 | ||||
文献[ | 2021 | 精度96.26% | — | ||||
目标跟踪法 | 文献[ | 2018 | — | 扇贝、海参 | 实用性较强 | 通用性较差 | |
文献[ | 2022 | 精度89% | 金枪鱼 | ||||
密度图回归法 | 文献[ | 2019 | 平均误差13.7% | 鲤鱼 | 可获取目标群体分布信息, 计数精度较高 | 密度图生成易受气泡、 光线等因素干扰 | |
文献[ | 2021 | 精度大于90% | 鱼苗 | ||||
文献[ | 2021 | 平均精度99.2% | 虾卵 | ||||
文献[ | 2022 | — | 鱼苗 |
养殖模式 | 文献来源 | 提出年份 | 常用计数方法 | 硬件使用 | 适用品种 | 局限 | |
---|---|---|---|---|---|---|---|
海水 养殖 | 深水网箱养殖 | 文献[ | 2008 | 检测、跟踪计数 | 超声换能器基阵 | 大黄鱼等海水鱼 | 水质复杂且水深 |
文献[ | 2021 | 跟踪计数 | 无人艇声呐 | ||||
文献[ | 2020 | 回归计数 | 单目相机 | ||||
陆地 养殖 | 池塘循环水养殖 | 文献[ | 2016 | 跟踪计数 | 鱼道、单目相机 | 常见淡水鱼 | 高密度鱼群遮挡 |
工业循环水养殖 | 文献[ | 2015 | 几何特征计数 | 近红外、双目等 三维图像相机、吸鱼泵 | 大菱鲆等高档鱼类 | 鱼种粘连严重, 环境昏暗 | |
池塘养殖 | 文献[ | 2009 | 检测、跟踪计数 | DIDISON小型声呐 | 常见淡水鱼 | 水质浑浊 | |
文献[ | 2017 |
Tab. 4 Counting applications based on actual aquaculture environment
养殖模式 | 文献来源 | 提出年份 | 常用计数方法 | 硬件使用 | 适用品种 | 局限 | |
---|---|---|---|---|---|---|---|
海水 养殖 | 深水网箱养殖 | 文献[ | 2008 | 检测、跟踪计数 | 超声换能器基阵 | 大黄鱼等海水鱼 | 水质复杂且水深 |
文献[ | 2021 | 跟踪计数 | 无人艇声呐 | ||||
文献[ | 2020 | 回归计数 | 单目相机 | ||||
陆地 养殖 | 池塘循环水养殖 | 文献[ | 2016 | 跟踪计数 | 鱼道、单目相机 | 常见淡水鱼 | 高密度鱼群遮挡 |
工业循环水养殖 | 文献[ | 2015 | 几何特征计数 | 近红外、双目等 三维图像相机、吸鱼泵 | 大菱鲆等高档鱼类 | 鱼种粘连严重, 环境昏暗 | |
池塘养殖 | 文献[ | 2009 | 检测、跟踪计数 | DIDISON小型声呐 | 常见淡水鱼 | 水质浑浊 | |
文献[ | 2017 |
1 | 农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会. 2021中国渔业统计年鉴[M]. 北京:中国农业出版社, 2021:1-17. |
Bureau of Fisheries, Ministry of Agriculture and Rural Affairs, National Fisheries Technology Extension Center, China Society of Fisheries. 2021 China Fishery Statistical Yearbook[M]. Beijing: China Agriculture Press, 2021:1-17. | |
2 | LI D L, MIAO Z, PENG F, et al. Automatic counting methods in aquaculture: a review[J]. Journal of the World Aquaculture Society, 2021, 52(2): 269-283. 10.1111/jwas.12745 |
3 | ZHAO S, ZHANG S, LIU J, et al. Application of machine learning in intelligent fish aquaculture: a review[J]. Aquaculture, 2021, 540: No.736724. 10.1016/j.aquaculture.2021.736724 |
4 | PAPADAKIS V M, PAPADAKIS I E, LAMPRIANIDOU F, et al. A computer-vision system and methodology for the analysis of fish behavior[J]. Aquacultural Engineering, 2012, 46: 53-59. 10.1016/j.aquaeng.2011.11.002 |
5 | WANG N X R, CULLIS-SUZUKI S, BRANZAN ALBU A. Automated analysis of wild fish behavior in a natural habitat[C]// Proceedings of the 2nd International Workshop on Environmental Multimedia Retrieval. New York: ACM, 2015: 21-26. 10.1145/2764873.2764875 |
6 | 谢炎福. 鱼苗计数中的骗局[J]. 科学养鱼, 2006(2): 47-47. |
XIE Y F. Scams in fry counting[J]. Scientific Fish Farming, 2006(2): 47-47. | |
7 | 刘山乔. 谨防购买鱼苗计数中的骗术[J]. 农村百事通, 2014(8): 43-44. 10.3969/j.issn.1006-9119.2014.08.025 |
LIU S Q. Beware of scams in the counting of purchased fry[J]. Rural Knowledgeable Person, 2014(8): 43-44. 10.3969/j.issn.1006-9119.2014.08.025 | |
8 | 珠江水利委员会珠江水利科学研究院. 基于光栅的鱼道过鱼计数系统:201720805553.3[P]. 2018-01-16. |
Pearl River Hydraulic Research Institute of Pearl River Resources Commission. Grating-based fish passage counting system: 201720805553.3[P]. 2018-01-16. | |
9 | 中国水产科学研究院珠江水产研究所. 一种鱼道过鱼效果的声学评估方法:201610599175.8[P]. 2016-12-21. |
Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences. An acoustic evaluation method for the effect of fish passage: 201610599175.8[P]. 2016-12-21. | |
10 | WANG Y H, DAN X Z, LI J R, et al. Multi-perspective digital image correlation method using a single color camera[J]. Science China Technological Sciences, 2018, 61(1): 61-67. 10.1007/s11431-017-9101-8 |
11 | GUO Y M, LIU Y, OERLEMANS A, et al. Deep learning for visual understanding: a review[J]. Neurocomputing, 2016, 187: 27-48. 10.1016/j.neucom.2015.09.116 |
12 | FORSYTH D A, PONCE J. Computer Vision: A Modern Approach[M]. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2011:20-45. |
13 | 徐建瑜,崔绍荣,苗香雯,等. 计算机视觉技术在水产养殖中的应用与展望[J]. 农业工程学报, 2005, 21(8):174-178. 10.1631/jzus.2005.b0812 |
XU J Y, CUI S R, MIAO X W, et al. Application and prospect of computer vision technology in aquaculture[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(8):174-178. 10.1631/jzus.2005.b0812 | |
14 | LIU L, LU H, CAO Z G, et al. Counting fish in sonar images[C]// Proceedings of the 25th IEEE International Conference on Image Processing. Piscataway: IEEE, 2018: 3189-3193. 10.1109/icip.2018.8451154 |
15 | 刘世晶,涂雪滢,田昌凤,等. 基于机器视觉的吸鱼泵过鱼量计数系统试验研究[J]. 渔业现代化, 2020, 47(5):45-51. 10.3969/j.issn.1007-9580.2020.05.007 |
LIU S J, TU X Y, TIAN C F, et al. Research on the counting system of fish suction pump based on machine vision[J]. Fishery Modernization, 2020, 47(5):45-51. 10.3969/j.issn.1007-9580.2020.05.007 | |
16 | HASHISHO Y, DOLEREIT T, SEGELKEN-VOIGT A, et al. AI-assisted automated pipeline for length estimation, visual assessment of the digestive tract and counting of shrimp in aquaculture production[C]// Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP. Setúbal: SciTePress, 2021: 710-716. 10.5220/0010342007100716 |
17 | COSTA C, SCARDI M, VITALINI V, et al. A dual camera system for counting and sizing Northern Bluefin Tuna (Thunnus thynnus; Linnaeus, 1758) stock, during transfer to aquaculture cages, with a semi automatic Artificial Neural Network tool[J]. Aquaculture, 2009, 291(3/4): 161-167. 10.1016/j.aquaculture.2009.02.013 |
18 | PAUTSINA A, CÍSAŘ P, ŠTYS D, et al. Infrared reflection system for indoor 3D tracking of fish[J]. Aquacultural Engineering, 2015, 69: 7-17. 10.1016/j.aquaeng.2015.09.002 |
19 | LIN K, ZHOU C, XU D M, et al. Three-dimensional location of target fish by monocular infrared imaging sensor based on a L-z correlation model[J]. Infrared Physics and Technology, 2018, 88: 106-113. 10.1016/j.infrared.2017.11.002 |
20 | ZHOU C, ZHANG B H, LIN K, et al. Near-infrared imaging to quantify the feeding behavior of fish in aquaculture[J]. Computers and Electronics in Agriculture, 2017, 135: 233-241. 10.1016/j.compag.2017.02.013 |
21 | FU X P, SHANG X D, SUN X D, et al. Underwater hyperspectral target detection with band selection[J]. Remote Sensing, 2020, 12(7): No.1056. 10.3390/rs12071056 |
22 | 于红. 水产动物目标探测与追踪技术及应用研究进展[J]. 大连海洋大学学报, 2020, 35(6):793-804. |
YU H. Research progress on object detection and tracking techniques utilization in aquaculture: a review[J]. Journal of Dalian Ocean University, 2020, 35(6):793-804. | |
23 | SHAHRESTANI S, BI H S, LYUBCHICH V, et al. Detecting a nearshore fish parade using the Adaptive Resolution Imaging Sonar (ARIS): an automated procedure for data analysis[J]. Fisheries Research, 2017, 191:190-199. 10.1016/j.fishres.2017.03.013 |
24 | JING D X, HAN J, WANG X D, et al. A method to estimate the abundance of fish based on Dual-Frequency Identification Sonar (DIDSON) imaging[J]. Fisheries Science, 2017, 83(5): 685-697. 10.1007/s12562-017-1111-3 |
25 | ENOMOTO K, TODA M, KUWAHARA Y. Bottom sediment classification method from seabed image for automatic counting system of scallop[C]// Proceedings of the 2012 International Symposium on Optomechatronic Technologies. Piscataway: IEEE, 2012: 1-6. 10.1109/isot.2012.6403262 |
26 | RASMUSSEN C, ZHAO J Y, FERRARO D, et al. Deep census: AUV-based scallop population monitoring[C]// Proceedings of the 2017 International Conference on Computer Vision Workshops. Piscataway: IEEE, 2017: 2865-2873. 10.1109/iccvw.2017.338 |
27 | 张翔,沈蔚,童剑锋,等. 基于 DIDSON 双频识别声纳技术的青草沙水库鱼类资源量评估[J]. 上海海洋大学学报, 2017, 26(4): 561-569. |
ZHANG X, SHEN W, TONG J F, et al. Evaluation of fish resources in Qingcaosha Reservoir based on dual-frequency identification sonar technology[J]. Journal of Shanghai Ocean University, 2017, 26(4): 561-569. | |
28 | CHANG C C, UBINA N A, CHENG S C, et al. A two-mode underwater smart sensor object for precision aquaculture based on AIoT technology[J]. Sensors, 2022, 22(19): No.7603. 10.3390/s22197603 |
29 | SINGH W, ÖRNÓLFSDÓTTIR E B, STEFANSSON G. A camera-based autonomous underwater vehicle sampling approach to quantify scallop abundance[J]. Journal of Shellfish Research, 2013, 32(3): 725-732. 10.2983/035.032.0314 |
30 | DAWKINS M, STEWART C, GALLAGER S, et al. Automatic scallop detection in benthic environments[C]// Proceedings of the 2013 IEEE Workshop on Applications of Computer Vision. Piscataway: IEEE, 2013: 160-167. 10.1109/wacv.2013.6475014 |
31 | 卢振坤,刘胜,钟乐,等. 人群计数研究综述[J]. 计算机工程与应用, 2022, 58(11):33-46. 10.3778/j.issn.1002-8331.2111-0281 |
LU Z K, LIU S, ZHONG L, et al. Survey on research of crowd counting[J]. Computer Engineering and Applications, 2022, 58(11):33-46. 10.3778/j.issn.1002-8331.2111-0281 | |
32 | FRANÇA ALBUQUERQUE P L, GARCIA V, SILVA OLIVEIRA A DA, Junior, et al. Automatic live fingerlings counting using computer vision[J]. Computers and Electronics in Agriculture, 2019, 167: No.105015. 10.1016/j.compag.2019.105015 |
33 | WEISS K, KHOSHGOFTAAR T M, WANG D D. A survey of transfer learning[J]. Journal of Big Data, 2016, 3: No.9. 10.1186/s40537-016-0043-6 |
34 | PEREIRA C S, MORAIS R, REIS M J C S. Deep learning techniques for grape plant species identification in natural images[J]. Sensors, 2019, 19(22): No.4850. 10.3390/s19224850 |
35 | TOH Y H, NG T M, LIEW B K. Automated fish counting using image processing[C]// Proceedings of the 2009 International Conference on Computational Intelligence and Software Engineering. Piscataway: IEEE, 2009: 1-5. 10.1109/cise.2009.5365104 |
36 | LABUGUEN R T, VOLANTE E J P, CAUSO A, et al. Automated fish fry counting and schooling behavior analysis using computer vision[C]// Proceedings of the IEEE 8th International Colloquium on Signal Processing and its Applications. Piscataway: IEEE, 2012: 255-260. 10.1109/cspa.2012.6194729 |
37 | 范嵩,刘娇,杨轶. 图像识别技术在鱼苗计数方面的研究与实现[J]. 水产科学, 2008, 27(4): 210-212. 10.3969/j.issn.1003-1111.2008.04.013 |
FAN S, LIU J, YANG Y. Research and realization of fry counting based on image recognition technology[J]. Fisheries Science, 2008, 27(4): 210-212. 10.3969/j.issn.1003-1111.2008.04.013 | |
38 | 王硕,范良忠,刘鹰. 基于计算机视觉的大菱鲆鱼苗计数方法研究[J]. 渔业现代化, 2015, 42(1):16-19. 10.3969/j.issn.1007-9580.2015.01.004 |
WANG S, FAN L Z, LIU Y. The research of turbot fry counting method based on computer vision[J]. Fishery Modernization, 2015, 42(1): 16-19. 10.3969/j.issn.1007-9580.2015.01.004 | |
39 | KHANTUWAN W, KHIRIPET N. Live shrimp larvae counting method using co-occurrence color histogram[C]// Proceedings of the 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. Piscataway: IEEE, 2012: 1-4. 10.1109/ecticon.2012.6254280 |
40 | KANNAPPAN P, WALKER J H, TREMBANIS A, et al. Identifying sea scallops from benthic camera images[J]. Limnology and Oceanography: Methods, 2014, 12(10): 680-693. 10.4319/lom.2014.12.680 |
41 | KESVARAKUL R, CHIANRABUTRA C, CHIANRABUTRA S. Baby shrimp counting via automated image processing[C]// Proceedings of the 9th International Conference on Machine Learning and Computing. New York: ACM, 2017: 352-356. 10.1145/3055635.3056652 |
42 | FABIC J N, TURLA I E, CAPACILLO J A, et al. Fish population estimation and species classification from underwater video sequences using blob counting and shape analysis[C]// Proceedings of the 2013 IEEE International Underwater Technology Symposium. Piscataway: IEEE, 2013: 1-6. 10.1109/ut.2013.6519876 |
43 | HERNÁNDEZ-ONTIVEROS J M, INZUNZA-GONZÁLEZ E, GARCÍA-GUERRERO E E, et al. Development and implementation of a fish counter by using an embedded system[J]. Computers and Electronics in Agriculture, 2018, 145:53-62. 10.1016/j.compag.2017.12.023 |
44 | LI X, HAO J, QIN H W, et al. Real-time fish localization with binarized normed gradients[C]// Proceedings of the 2015 MTS/IEEE OCEANS Conference. Piscataway: IEEE, 2015: 1-5. 10.23919/oceans.2015.7404465 |
45 | MORAIS E F, CAMPOS M F M, PÁDUA F L C, et al. Particle filter-based predictive tracking for robust fish counting[C]// Proceedings of the XVIII Brazilian Symposium on Computer Graphics and Image Processing. Piscataway: IEEE, 2005: 367-374. 10.1109/sibgrapi.2005.36 |
46 | 沈蔚,朱振宏,张进,等. 基于双频识别声呐的鱼类目标识别与计数[J]. 渔业现代化, 2020, 47(6): 81-87. 10.3969/j.issn.1007-9580.2020.06.012 |
SHEN W, ZHU Z H, ZHANG J, et al. Fish target recognition and counting based on Dual-frequency Identification Sonar[J]. Fishery Modernization, 2020, 47(6): 81-87. 10.3969/j.issn.1007-9580.2020.06.012 | |
47 | TAN C S, LAU P Y, CORREIA P L, et al. Automatic analysis of deep-water remotely operated vehicle footage for estimation of Norway lobster abundance[J]. Frontiers of Information Technology and Electronic Engineering, 2018, 19(8): 1042-1055. 10.1631/fitee.1700720 |
48 | FAN L Z, LIU Y. Automate fry counting using computer vision and multi-class least squares support vector machine[J]. Aquaculture, 2013, 380/381/382/383: 91-98. 10.1016/j.aquaculture.2012.10.016 |
49 | RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. 10.1038/323533a0 |
50 | LUTS J, OJEDA F, R van de PLAS, et al. A tutorial on support vector machine-based methods for classification problems in chemometrics[J]. Analytica Chimica Acta, 2010, 665(2): 129-145. 10.1016/j.aca.2010.03.030 |
51 | LE J Y, XU L H. An automated fish counting algorithm in aquaculture based on image processing[C]// Proceedings of the 2016 International Forum on Mechanical, Control and Automation. Dordrecht: Atlantis Press, 2017: 358-366. 10.2991/ifmca-16.2017.56 |
52 | NEWBURY P F, CULVERHOUSE P F, PILGRIM D A. Automatic fish population counting by artificial neural network[J]. Aquaculture, 1995, 133(1): 45-55. 10.1016/0044-8486(95)00003-k |
53 | ZHENG X T, ZHANG Y W. A fish population counting method using fuzzy artificial neural network[C]// Proceedings of the 2010 IEEE Conference on Progress in Informatics and Computing. Piscataway: IEEE, 2010: 225-228. 10.1109/pic.2010.5687462 |
54 | ZHANG L, LI W S, LIU C H, et al. Automatic fish counting method using image density grading and local regression[J]. Computers and Electronics in Agriculture, 2020, 179: No.105844. 10.1016/j.compag.2020.105844 |
55 | LeCUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. 10.1038/nature14539 |
56 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
57 | THAI T T N, NGUYEN T S, PHAM V C. Computer vision based estimation of shrimp population density and size[C]// Proceedings of the 2021 International Symposium on Electrical and Electronics Engineering. Piscataway: IEEE, 2021: 145-148. 10.1109/isee51682.2021.9418638 |
58 | NGUYEN K T, NGUYEN C N, WANG C Y, et al. Two-phase instance segmentation for whiteleg shrimp larvae counting[C]// Proceedings of the 2020 International Conference on Consumer Electronics. Piscataway: IEEE, 2020: 1-3. 10.1109/icce46568.2020.9043075 |
59 | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// Proceedings of the 2017 International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. 10.1109/iccv.2017.322 |
60 | TSENG C H, KUO Y F. Detecting and counting harvested fish and identifying fish types in electronic monitoring system videos using deep convolutional neural networks[J]. ICES Journal of Marine Science, 2020, 77(4): 1367-1378. 10.1093/icesjms/fsaa076 |
61 | DOLLÁR P, WOJEK C, SCHIELE B, et al. Pedestrian detection: an evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761. 10.1109/tpami.2011.155 |
62 | LI X, TANG Y H, GAO T W. Deep but lightweight neural networks for fish detection[C]// Proceedings of the 2017 MTS/IEEE OCEANS Conference. Piscataway: IEEE, 2017: 1-5. 10.1109/oceanse.2017.8084961 |
63 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1. Cambridge: MIT Press, 2015: 91-99. |
64 | LAINEZ S M D, GONZALES D B. Automated fingerlings counting using convolutional neural network[C]// Proceedings of the IEEE 4th International Conference on Computer and Communication Systems. Piscataway: IEEE, 2019: 67-72. 10.1109/ccoms.2019.8821746 |
65 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525. 10.1109/cvpr.2017.690 |
66 | 张璐,黄琳,李备备,等. 基于多尺度融合与无锚点YOLO v3的鱼群计数方法[J]. 农业机械学报, 2021, 52(S1):237-244. |
ZHANG L, HUANG L, LI B B, et al. Fish school counting method based on multi-scale fusion and no anchor YOLO v3[J]. Transactions of the Chinese Society of Agricultural Machinery, 2021, 52(S1):237-244. | |
67 | FARHADI A, REDMON J. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2022-06-10].. |
68 | XU F Q, DING X Y, PENG J J, et al. Real-time detecting method of marine small object with underwater robot vision[C]// Proceedings of the 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans. Piscataway: IEEE, 2018: 1-4. 10.1109/oceanskobe.2018.8558804 |
69 | BEWLEY A, GE Z Y, OTT L, et al. Simple online and realtime tracking[C]// Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 3464-3468. 10.1109/icip.2016.7533003 |
70 | WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]// Proceedings of the 2017 IEEE International Conference on Image Processing. Piscataway: IEEE, 2017: 3645-3649. 10.1109/icip.2017.8296962 |
71 | TANAKA R, NAKANO T, OGAWA T. Sequential fish catch counter using vision-based fish detection and tracking[C]// Proceedings of the 2022 OCEANS Conference. Piscataway: IEEE, 2022: 1-5. 10.1109/oceanschennai45887.2022.9775327 |
72 | ZHANG L, SHI M J, CHEN Q B. Crowd counting via scale-adaptive convolutional neural network[C]// Proceedings of the 2018 Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 1113-1121. 10.1109/wacv.2018.00127 |
73 | LEMPITSKY V, ZISSERMAN A. Learning to count objects in images[C]// Proceedings of the 23rd International Conference on Neural Information Processing Systems - Volume 1. Red Hook, NY: Curran Associates Inc., 2010: 1324-1332. |
74 | ZHANG Y Y, ZHOU D S, CHEN S Q, et al. Single-image crowd counting via multi-column convolutional neural network[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 589-597. 10.1109/cvpr.2016.70 |
75 | XIE W D, NOBLE J A, ZISSERMAN A. Microscopy cell counting and detection with fully convolutional regression networks[J]. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2018, 6(3): 283-292. 10.1080/21681163.2016.1149104 |
76 | YU J T, JIA R S, LI Y C, et al. Automatic fish counting via a multi-scale dense residual network[J]. Multimedia Tools and Applications, 2022, 81(12): 17223-17243. 10.1007/s11042-022-12672-y |
77 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
78 | ZHOU Y Z, YU H, WU J F, et al. Fish density estimation with multi-scale context enhanced convolutional neural network[J]. Journal of Communications and Information Networks, 2019, 4(3): 80-88. 10.23919/jcin.2019.8917888 |
79 | 王金凤,胡凯,江帆,等. 基于改进深度学习模型的鱼群密度检测试验研究[J]. 渔业现代化, 2021, 48(2): 77-82. 10.3969/j.issn.1007-9580.2021.02.012 |
WANG J F, HU K, JIANG F, et al. Experimental research on fish density detection based on improved deep learning model[J]. Fishery Modernization, 2021, 48(2): 77-82. 10.3969/j.issn.1007-9580.2021.02.012 | |
80 | LI Y H, ZHANG X F, CHEN D M. CSRNet: dilated convolutional neural networks for understanding the highly congested scenes[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1091-1100. 10.1109/cvpr.2018.00120 |
81 | ZHANG J J, YANG G W, SUN L H, et al. Shrimp egg counting with fully convolutional regression network and generative adversarial network[J]. Aquacultural Engineering, 2021, 94: No.102175. 10.1016/j.aquaeng.2021.102175 |
82 | 侯海燕,鞠晓晖,陈雨生. 国外深海网箱养殖业发展动态及其对中国的启示[J]. 世界农业, 2017(5): 162-166. |
HOU H Y, JU X H, CHEN Y S. The development of foreign deep-sea net cage culture and its inspiration to China[J]. World Agriculture, 2017(5): 162-166. | |
83 | 郭根喜,关长涛,江涛,等. 走进挪威和爱尔兰深海网箱养殖[J]. 海洋与渔业·水产前沿, 2011(2): 32-38. |
GUO G X, GUAN C T, JIANG T, et al. Introduction of Norwegian and Irish deep-sea net cage farming[J]. Ocean and Fishery, 2011(2): 32-38. | |
84 | 黄健,关长涛,汤涛林,等. 基于单回波检测跟踪的深水网箱生物量评估模型研究[J]. 渔业现代化, 2008, 35(6): 9-13. 10.3969/j.issn.1007-9580.2008.06.003 |
HUANG J, GUAN C T, TANG T L, et al. Research on a novel biomass estimation model for deep water net cages based on single echo detection and tracking[J]. Fishery Modernization, 2008, 35(6): 9-13. 10.3969/j.issn.1007-9580.2008.06.003 | |
85 | 中联智科高新技术有限公司. 一种鱼类数据统计分析系统:201910593141.1[P]. 2021-01-05. |
Zhonglian Zhike High Technology Co., Ltd. A fish data statistical analysis system: 201910593141.1[P]. 2021-01-05. | |
86 | ZHANG S, YANG X T, WANG Y Z, et al. Automatic fish population counting by machine vision and a hybrid deep neural network model[J]. Animals, 2020, 10(2): No.364. 10.3390/ani10020364 |
87 | XIAO R C, WEI Y G, AN D, et al. A review on the research status and development trend of equipment in water treatment processes of recirculating aquaculture systems[J]. Reviews in Aquaculture, 2019, 11(3): 863-895. 10.1111/raq.12270 |
88 | 张曦文,吴垠,贺茹靖,等. 循环水养殖模式下养殖密度对青石斑鱼生长及生理指标的影响[J]. 大连海洋大学学报, 2012, 27(6): 518-522. 10.3969/j.issn.2095-1388.2012.06.006 |
ZHANG X W, WU Y, HE R J, et al. The effects of stocking density on growth and physiological indices of grouper Epinephelus awoara in recirculating aquaculture[J]. Journal of Dalian Ocean University, 2012, 27(6): 518-522. 10.3969/j.issn.2095-1388.2012.06.006 | |
89 | BAO W J, ZHU S M, GUO S R, et al. Assessment of water quality and fish production in an intensive pond aquaculture system[J]. Transactions of the ASABE, 2018, 61(4): 1425-1433. 10.13031/trans.12799 |
90 | 三峡大学. 一种基于水下视频的鱼道过鱼量自动计数系统:201610347154.7[P]. 2016-10-12. |
China Three Gorges University. An automatic counting system of fish passage quantity based on underwater video: 201610347154.7[P]. 2016-10-12. | |
91 | 翟旭亮,薛洋,李虹,等. 池塘工程化循环水养殖中集排污系统效果研究[J]. 科学养鱼, 2020(10):78-80. 10.3969/j.issn.1004-843X.2020.10.041 |
ZHAI X L, XUE Y, LI H, et al. Study on the effect of collecting and discharging system in pond engineered recirculating water culture[J]. Scientific Fish Farming, 2020(10):78-90. 10.3969/j.issn.1004-843X.2020.10.041 | |
92 | 王峰,雷霁霖,高淳仁,等. 国内外工厂化循环水养殖模式水质处理研究进展[J]. 中国工程科学, 2013, 15(10): 16-23, 32. 10.3969/j.issn.1009-1742.2013.10.003 |
WANG F, LEI J L, GAO C R, et al. Research progress of water conditioning in industry recirculating aquaculture mode at home and abroad[J]. Engineering Sciences, 2013, 15(10): 16-23, 32. 10.3969/j.issn.1009-1742.2013.10.003 | |
93 | 北京农业信息技术研究中心. 一种工厂化循环水养殖鱼类游动速度估算系统及方法: 201610835707.3[P]. 2017-01-25. |
Beijing Research Center for Information Technology in Agriculture. System and method for estimating swimming speed of fish in industrial recirculating aquaculture: 201610835707.3[P]. 2017-01-25. | |
94 | PETRELL R J, SHI X, WARD R K, et al. Determining fish size and swimming speed in cages and tanks using simple video techniques[J]. Aquacultural Engineering, 1997, 16(1/2):63-84. 10.1016/s0144-8609(96)01014-x |
95 | STEEVES G D, PETERSON R H, CLARK L D. A quantitative stereoscopic video system for visually measuring the linear dimensions of free-swimming fish[C]// Proceedings of the 1998 OCEANS Conference - Volume 3. Piscataway: IEEE, 1998, 3: 1405-1408. |
96 | 童心雨,姜森颢,葛宝明,等. 我国池塘养殖业发展现状与对策[J]. 中国农业科技导报, 2020, 22(8): 5-13. |
TONG X Y, JIANG S H, GE B M, et al. Development status and countermeasures of pond aquaculture industry in China[J]. Journal of Agricultural Science and Technology, 2020, 22(8): 5-13. | |
97 | 童剑锋,韩军,浅田昭,等. 基于声学摄像仪的溯河洄游幼香鱼计数[J]. 渔业现代化, 2009, 36(2): 29-33. 10.3969/j.issn.1007-9580.2009.02.007 |
TONG J F, HAN J, QIAN T Z, et al. Counting method of upstream juvenile Ayu (Plecoglossus altivelis) by acoustic camera[J]. Fishery Modernization, 2009, 36(2):29-33. 10.3969/j.issn.1007-9580.2009.02.007 | |
98 | GARCIA V, SANT’ANA D A, GARCIA ZANONI V A, et al. A new image dataset for the evaluation of automatic fingerlings counting[J]. Aquacultural Engineering, 2020, 89: No.102064. 10.1016/j.aquaeng.2020.102064 |
99 | 叶章颖,冀大熊. 水产养殖作业装备(一):计数器(Counter)[EB/OL]. (2021-02-25) [2022-06-17].. |
YE Z Y, JI D X. Aquaculture operation equipment (A): counter[EB/OL]. (2021-02-25) [2022-06-17].. | |
100 | 范松伟,林翔瑜,周平. 基于改进的卷积神经网络的虾苗自动计数研究[J]. 渔业现代化, 2020, 47(6): 35-41. 10.3969/j.issn.1007-9580.2020.06.006 |
FAN S W, LIN X Y, ZHOU P. Research on automatic counting of shrimp fry based on improved convolutional neural network[J]. Fishery Modernization, 2020, 47(6): 35-41. 10.3969/j.issn.1007-9580.2020.06.006 | |
101 | 上海泽泉科技股份有限公司. 小型水生生物计数及测量仪——XperCount[EB/OL]. (2017-04-24) [2022-06-17]. . |
Zealquest Scientific Technology Co., Ltd. Small aquatic organism counting and measuring instrument - XperCount[EB/OL]. (2017-04-24) [2022-06-17].. |
[1] | Xinyu CHEN, Mingzhe LIU, Jun REN, Ying TANG. Parameter asynchronous updating algorithm based on multi-column convolutional neural network [J]. Journal of Computer Applications, 2022, 42(2): 395-403. |
[2] | ZHANG Yazhou, LU Xianling. Surface defect detection method of light-guide plate based on improved coherence enhancing diffusion and texture energy measure-Gaussian mixture model [J]. Journal of Computer Applications, 2020, 40(5): 1545-1552. |
[3] | GAO Ming, REN Dejun, HU Yunqi, FU Lei, QIU Lyu. Ampoule packaging quality inspection algorithm based on machine vision and lightweight neural network [J]. Journal of Computer Applications, 2020, 40(10): 2899-2903. |
[4] | SHI Changyou, WANG Meili, LIU Xinran, HUANG Huili, ZHOU Deqiang, DENG Ganran. Node recognition for different types of sugarcanes based on machine vision [J]. Journal of Computer Applications, 2019, 39(4): 1208-1213. |
[5] | YANG Jidong, SUN Zhaoqi, WANG Feilong. Optimal path control of parallel truss manipulator based on visual grasping [J]. Journal of Computer Applications, 2019, 39(3): 913-917. |
[6] | LIU Baocheng, PIAO Yan, TANG Yue. Person re-identification in video sequence based on spatial-temporal regularization [J]. Journal of Computer Applications, 2019, 39(11): 3216-3220. |
[7] | ZHANG Yunke, LIU Dan. Real-time implementation of improved TINY YOLO vehicle detection algorithm based on Zynq SoC hardware acceleration [J]. Journal of Computer Applications, 2019, 39(1): 192-198. |
[8] | LI Xiao, GE Baozhen, LUO Qijun, LI Yunpeng, TIAN Qingguo. Acquisition of camera dynamic extrinsic parameters in free binocular stereo vision system [J]. Journal of Computer Applications, 2017, 37(10): 2888-2894. |
[9] | ZHAO Shuyan, LU Yanxue, HAN Xiaoxia. Rapid video background extraction algorithm based on nearest neighbor pixel gradient [J]. Journal of Computer Applications, 2016, 36(8): 2322-2326. |
[10] | LI Jie, ZHOU Hao, ZHANG Jin, GAO Yun. Tracking algorithm by template matchingbased on particle swarm optimization [J]. Journal of Computer Applications, 2015, 35(9): 2656-2660. |
[11] | HUAN Hai, HUANG Lingxiao, ZHANG Yu, LU Song. Detection of elliptical hole group based on maximum inscribed circle [J]. Journal of Computer Applications, 2015, 35(4): 1101-1105. |
[12] | JIANG Jie ZHOU Lina LI Gang. Sheep body size measurement based on computer vision [J]. Journal of Computer Applications, 2014, 34(3): 846-850. |
[13] | XU Xiao WANG Run PENG Guojie YANG Qi WANG Yiwen LI Hui. Implementation of calibration for machine vision electronic whiteboard [J]. Journal of Computer Applications, 2014, 34(1): 139-141. |
[14] | ZHOU Zu-wei LIU Sen WANG Yi-wen LI Hui. Anti-shake and coordinate interpolation techniques in machine vision electronic whiteboard system application [J]. Journal of Computer Applications, 2012, 32(12): 3408-3410. |
[15] | GAO Zhi ZHU Zhi-hao XU Yong-hong HONG Wen-xue. Texture classification based on quaternion wavelet transform and multifractal characteristics [J]. Journal of Computer Applications, 2012, 32(03): 773-776. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||