[1] 李幼蛟,卓力,张菁,等.行人再识别技术综述[J].自动化学报, 2018, 44(9):1554-1568. (LI Y J, ZHUO L, ZHANG J, et al. A survey of person re-identification[J]. Acta Automatica Sinica, 2018, 44(9):1554-1568.) [2] MCLAUGHLIN N, DEL RINCON J M, MILLER P. Recurrent convolutional network for video-based person re-identification[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:1325-1334. [3] WU Z, WANG X, JIANG Y G, et al. Modeling spatial-temporal clues in a hybrid deep learning framework for video classification[C]//Proceedings of the 23rd ACM International Conference on Multimedia. New York:ACM, 2015:461-470. [4] LIU Y, YAN J, OUYANG W. Quality aware network for set to set recognition[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:4694-4703. [5] ZHOU Z, HUANG Y, WANG W, et al. See the forest for the trees:Joint spatial and temporal recurrent neural networks for video-based person re-identification[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:4747-4756. [6] KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural networks[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2014:1725-1732. [7] DENG J, DONG W, SOCHER R, et al. ImageNet:a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2009:248-255. [8] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [9] YOU J, WU A, LI X, et al. Top-push video-based person re-identification[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:1345-1353. [10] YAN Y, NI B, SONG Z, et al. Person re-identification via recurrent feature aggregation[C]//Proceedings of the 14th European Conference on Computer Vision. Berlin:Springer, 2016:701-716. [11] XU K, BA J, KIROS R, et al. Show, attend and tell:Neural image caption generation with visual attention[C]//Proceedings of the 32nd International Conference on Machine Learning.[S. l.]:International Machine Learning Society, 2015:2048-2057. [12] HERMANS A, BEYR L, LEIBE B. In defense of the triplet loss for person re-identification[EB/OL].[2017-11-21]. http://arxiv.org/pdf/1703.07737. [13] KINGMA D P, BA J. Adam:a method for stochastic optimization[EB/OL].[2017-01-30]. http://csce.uark.edu/~mgashler/ml/2018_spring/r3/adam.pdf. [14] ZHENG L, BIE Z, SUN Y, et al. Mars:a video benchmark for large-scale person re-identification[C]//Proceedings of the 14th European Conference on Computer Vision. Berlin:Springer, 2016:868-884. [15] ZHENG Z, ZHENG L, YANG Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2017:3754-3762. [16] RISTANI E, SOLERA F, ZOU R, et al. Performance measures and a data set for multi-target, multi-camera tracking[C]//Proceedings of the 14th European Conference on Computer Vision. Berlin:Springer, 2016:17-35. [17] LI D, CHEN X, ZHANG Z, et al. Learning deep context-aware features over body and latent parts for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:384-393. [18] XIAO Q, LUO H, ZHANG C. Margin sample mining loss:a deep learning based method for person re-identification[EB/OL].[2017-10-07]. http://arxiv.org/pdf/1710.00478. [19] LI S, BAK S, CARR P, et al. Diversity regularized spatiotemporal attention for video-based person re-identification[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:369-378. [20] LI W, ZHU X, GONG S. Harmonious attention network for person re-identification[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:2285-2294. [21] LIN Y, ZHENG L, ZHENG Z, et al. Improving person re-identification by attribute and identity learning[J]. Pattern Recognition, 2019, 95:151-161. [22] CHEN D, LI H, XIAO T, et al. Video person re-identification with competitive snippet-similarity aggregation and co-attentive snippet embedding[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:1169-1178. [23] CHANG X, HOSPEDALES T M, XIANG T. Multi-level factorisation net for person re-identification[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:2109-2118. [24] CHEN Y, ZHU X, GONG S. Person re-identification by deep learning multi-scale representations[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:2590-2600. [25] 李姣,张晓晖,朱虹,等.多置信度重排序的行人再识别算法[J].模式识别与人工智能, 2017, 30(11):995-1002. (LI J, ZHANG X H, ZHU H, et al. Person re-identification via multiple confidences re-ranking[J]. Pattern Recognition and Artificial Intelligence, 2017, 30(11):995-1002.) |