[1] 傅沈文. 复杂环境下基于图和条件随机域的运动车辆检测[J].计算机应用,2012,32(6):1581-1584.(FU S W. Moving vehicle detection in complex environments based on graph and conditional random field[J]. Journal of Computer Applications, 2012, 32(6):1581-1584.) [2] 陈艳,严腾,宋俊芳,等.基于高斯混合模型和AdaBoost的夜间车辆检测[J].计算机应用,2018,38(1):260-263.(CHEN Y, YAN T, SONG J F, et al. Night-time vehicle detection based on Gaussian mixture and AdaBoost[J]. Journal of Computer Applications, 2018, 38(1):260-263.) [3] 王德宇,徐友春,李永乐,等.基于深度学习的车辆检测方法[J].计算机与现代化,2017(8):56-60.(WANG D Y, XU Y C, LI Y L, et al. Vehicle detection based on deep learning[J]. Computer and Modernization, 2017(8):56-60.) [4] SRINIVASA N. Vision-based vehicle detection and tracking method for forward collision warning in automobiles[C]//IV 2002:Proceedings of the 2002 IEEE Intelligent Vehicle Symposium. Piscataway, NJ:IEEE, 2002:626-631. [5] SCHAMM T, VON CARLOWITZ C, ZOLLNER J M. On-road vehicle detection during dusk and at night[C]//IV 2010:Proceedings of the 2010 IEEE Intelligent Vehicles Symposium. Piscataway, NJ:IEEE, 2010:418-423. [6] CHANG W C, CHO C W. Online boosting for vehicle detection[J]. IEEE Transactions on Systems, Man & Cybernetics Part B, 2010, 40(3):892-902. [7] REZAEI M, TERAUCHI M. Vehicle detection based on multi-feature clues and Dempster-Shafer fusion theory[C]//PSIVT 2013:Proceedings of the 2013 Pacific-Rim Symposium on Image and Video Technology. Berlin:Springer, 2013:60-72. [8] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [9] REDMON J, FARHADI A. YOLO9000:better, faster, stronger[C]//CVPR 2017:Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2017:6517-6525. [10] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[J]. ArXiv Preprint, 2015, 2015:1512.03385. [11] MARTENS J. Deep learning via Hessian-free optimization[C]//ICML 2010:Proceedings of the 2010 International Conference on International Conference on Machine Learning. Madison, WI:Omnipress, 2010:735-742. [12] AN D C, MEIER U, MASCI J, et al. Flexible, high performance convolutional neural networks for image classification[C]//IJCAI 2011:Proceedings of the 2011 International Joint Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2011:1237-1242. [13] CHEN Y, SUN N, TEMAM O, et al. DaDianNao:a machine-learning supercomputer[C]//Proceedings of the 201447th Annual IEEE/ACM International Symposium on Microarchitecture. Piscataway, NJ:IEEE, 2015:609-622. [14] YUN S B, KIM Y J, DONG S S, et al. Hardware implementation of neural network with expansible and reconfigurable architecture[C]//ICONIP 2002:Proceedings of the 9th International Conference on Neural Information Processing. Piscataway, NJ:IEEE, 2002:970-975. [15] FARABET C, MARTINI B, CORDA B, et al. NeuFlow:a runtime-reconfigurable dataflow processor for vision[C]//CVPR 2011 Workshops:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2011:109-116. [16] SANKARADAS M, JAKKULA V, CADAMBI S, et al. A massively parallel coprocessor for convolutional neural networks[C]//ASAP 2009:Proceedings of the 2009/20th IEEE International Conference on Application-Specific Systems, Architectures and Processors. Piscataway, NJ:IEEE, 2009:53-60. |