Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (9): 2919-2924.DOI: 10.11772/j.issn.1001-9081.2022081288
• Multimedia computing and computer simulation • Previous Articles Next Articles
Received:
2022-08-30
Revised:
2022-11-09
Accepted:
2022-11-14
Online:
2023-01-11
Published:
2023-09-10
Contact:
Ziqi ZHU
About author:
CHEN Juntao, born in 1992, M. S. candidate. His research interests include computer vision, forgery detection.
Supported by:
通讯作者:
朱子奇
作者简介:
陈俊韬(1992—),男,福建福州人,硕士研究生,主要研究方向:计算机视觉、伪造检测;
基金资助:
CLC Number:
Juntao CHEN, Ziqi ZHU. Image copy-move forgery detection based on multi-scale feature extraction and fusion[J]. Journal of Computer Applications, 2023, 43(9): 2919-2924.
陈俊韬, 朱子奇. 基于多尺度特征提取与融合的图像复制-粘贴伪造检测[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2919-2924.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022081288
数据集 | 样本数 | 图像分辨率 |
---|---|---|
USCISI | 100 000 | 340×260~1 068×944 |
CASIA | 1 313 | 240×160~900×600 |
CoMoFoD | 5 000 | 512×512 |
Tab. 1 Information of datasets
数据集 | 样本数 | 图像分辨率 |
---|---|---|
USCISI | 100 000 | 340×260~1 068×944 |
CASIA | 1 313 | 240×160~900×600 |
CoMoFoD | 5 000 | 512×512 |
模型 | 模型组成 | F1/% |
---|---|---|
模型1 | base | 59.70 |
模型2 | base+skip | 63.89 |
模型3 | base+multi-channel | 69.24 |
模型4 | base+skip+multi-channel | 70.40 |
Tab. 2 Ablation experimental results of SimiNet on USCISI dataset
模型 | 模型组成 | F1/% |
---|---|---|
模型1 | base | 59.70 |
模型2 | base+skip | 63.89 |
模型3 | base+multi-channel | 69.24 |
模型4 | base+skip+multi-channel | 70.40 |
损失函数 | BusterNet-simi | CMSDNet | SimiNet |
---|---|---|---|
交叉熵 | 52.36 | 69.15 | 70.40 |
Log-Cosh Dice Loss | 55.92 | 71.23 | 72.54 |
Tab. 3 F1 scores of three models with different loss functions on USCISI dataset
损失函数 | BusterNet-simi | CMSDNet | SimiNet |
---|---|---|---|
交叉熵 | 52.36 | 69.15 | 70.40 |
Log-Cosh Dice Loss | 55.92 | 71.23 | 72.54 |
类别 | 方法 | F1/% | 参数量 | 运算量/MFLOPs |
---|---|---|---|---|
block-based | 文献[ | 16.90 | — | — |
key point-based | 文献[ | 17.10 | — | — |
deep learning | BusterNet-simi | 52.36 | 7 735 678 | 19 255 |
CMSDNet | 69.15 | 9 157 936 | 19 623 | |
SimiNet | 72.54 | 7 923 620 | 18 959 |
Tab. 4 Comparison of detection performance of different types of methods on USCISI dataset
类别 | 方法 | F1/% | 参数量 | 运算量/MFLOPs |
---|---|---|---|---|
block-based | 文献[ | 16.90 | — | — |
key point-based | 文献[ | 17.10 | — | — |
deep learning | BusterNet-simi | 52.36 | 7 735 678 | 19 255 |
CMSDNet | 69.15 | 9 157 936 | 19 623 | |
SimiNet | 72.54 | 7 923 620 | 18 959 |
方法 | CASIA | CoMoFoD |
---|---|---|
文献[ | 25.40 | 41.80 |
文献[ | 34.90 | 49.40 |
BusterNet-simi[ | 45.56 | 49.26 |
CMSDNet[ | 53.80 | 51.10 |
SimiNet | 53.80 | 51.96 |
Tab. 5 Comparison of F1 on CASIA and CoMoFoD datasets
方法 | CASIA | CoMoFoD |
---|---|---|
文献[ | 25.40 | 41.80 |
文献[ | 34.90 | 49.40 |
BusterNet-simi[ | 45.56 | 49.26 |
CMSDNet[ | 53.80 | 51.10 |
SimiNet | 53.80 | 51.96 |
1 | SABER A H, KHAN M A, MEJBEL B G. A survey on image forgery detection using different forensic approaches[J]. Advances in Science, Technology and Engineering Systems Journal, 2020, 5(3): 361-370. 10.25046/aj050347 |
2 | ZEDAN I A, SOLIMAN M M, ELSAYED K M, et al. Copy move forgery detection techniques: a comprehensive survey of challenges and future directions[J]. International Journal of Advanced Computer Science and Applications, 2021, 12(7): 248-264. 10.14569/ijacsa.2021.0120729 |
3 | KE Y, SUKTHANKAR R, HUSTON L. An efficient parts-based near-duplicate and sub-image retrieval system[C]// Proceedings of the 12th Annual ACM International Conference on Multimedia. New York: ACM, 2004: 869-876. 10.1145/1027527.1027729 |
4 | 颜普,苏亮亮,邵慧,等. 基于多支持区域局部亮度序的图像伪造检测[J]. 计算机应用, 2019, 39(9): 2707-2711. 10.11772/j.issn.1001-9081.2019020306 |
YAN P, SU L L, SHAO H, et al. Image forgery detection based on local intensity order and multi-support region[J]. Journal of Computer Applications, 2019, 39(9): 2707-2711. 10.11772/j.issn.1001-9081.2019020306 | |
5 | 林晶,黄添强,赖玥聪,等. 采用量化离散余弦变换系数检测视频单帧连续多次复制粘贴篡改[J]. 计算机应用, 2016, 36(5): 1356-1361. 10.11772/j.issn.1001-9081.2016.05.1356 |
LIN J, HUANG T Q, LAI Y C, et al. Detection of continuously and repeated copy-move forgery to single frame in videos by quantized DCT coefficients[J]. Journal of Computer Applications, 2016, 36(5): 1356-1361. 10.11772/j.issn.1001-9081.2016.05.1356 | |
6 | ZIMBA M, SUN X M. DWT-PCA (EVD) based copy-move image forgery detection[J]. International Journal of Digital Content Technology and its Applications, 2011, 5(1): 251-258. 10.4156/jdcta.vol5.issue1.27 |
7 | KANG X B, WEI S M. Identifying tampered regions using singular value decomposition in digital image forensics[C]// Proceedings of the 2008 International Conference on Computer Science and Software Engineering. Piscataway: IEEE, 2008: 926-930. 10.1109/csse.2008.876 |
8 | LEE J C, CHANG C P, CHEN W K. Detection of copy-move image forgery using histogram of orientated gradients[J]. Information Sciences, 2015, 321: 250-262. 10.1016/j.ins.2015.03.009 |
9 | MAHMOOD T, IRTAZA A, MEHMOOD Z, et al. Copy-move forgery detection through stationary wavelets and local binary pattern variance for forensic analysis in digital images[J]. Forensic Science International, 2017, 279: 8-21. 10.1016/j.forsciint.2017.07.037 |
10 | OUYANG J L, LIU Y Z, LIAO M. Robust copy-move forgery detection method using pyramid model and Zernike moments[J]. Multimedia Tools and Applications, 2019, 78(8): 10207-10225. 10.1007/s11042-018-6605-1 |
11 | YANG B, SUN X M, GUO H L, et al. A copy-move forgery detection method based on CMFD-SIFT[J]. Multimedia Tools and Applications, 2018, 77(1): 837-855. 10.1007/s11042-016-4289-y |
12 | MANU V T, MEHTRE B M. Detection of copy-move forgery in images using segmentation and SURF[M]// THAMPI S M, BANDYOPADHYAY S, KRISHNAN S, et al. Advances in Signal Processing and Intelligent Recognition Systems: Proceedings of Second International Symposium on Signal Processing and Intelligent Recognition Systems, AISC 425. Cham: Springer, 2016: 645-654. 10.1007/978-3-319-28658-7_55 |
13 | 焦丽鑫,杜振龙. 基于均值漂移的图像复制粘贴伪造盲检测[J]. 计算机应用, 2014, 34(3): 806-809. |
JIAO L X, DU Z L. Copy-paste image forgery blind detection based on mean shift[J]. Journal of Computer Applications, 2014, 34(3): 806-809. | |
14 | MEENA K B, TYAGI V. A hybrid copy-move image forgery detection technique based on Fourier-Mellin and scale invariant feature transforms[J]. Multimedia Tools and Applications, 2020, 79(11/12): 8197-8212. 10.1007/s11042-019-08343-0 |
15 | RAO Y, NI J Q. A deep learning approach to detection of splicing and copy-move forgeries in images[C]// Proceedings of the 2016 IEEE International Workshop on Information Forensics and Security. Piscataway: IEEE, 2016: 1-6. 10.1109/wifs.2016.7823911 |
16 | OUYANG J L, LIU Y Z, LIAO M. Copy-move forgery detection based on deep learning[C]// Proceedings of the 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Piscataway: IEEE, 2017: 1-5. 10.1109/cisp-bmei.2017.8301940 |
17 | WU Y, ABD-ALMAGEED W, NATARAJAN P. Image copy-move forgery detection via an end-to-end deep neural network[C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 1907-1915. 10.1109/wacv.2018.00211 |
18 | WU Y, ABD-ALMAGEED W, NATARAJAN P. BusterNet: detecting copy-move image forgery with source/target localization[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11210. Cham: Springer, 2018: 170-186. |
19 | CHEN B J, TAN W J, COATRIEUX G, et al. A serial image copy-move forgery localization scheme with source/target distinguishment[J]. IEEE Transactions on Multimedia, 2021, 23: 3506-3517. 10.1109/tmm.2020.3026868 |
20 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2022-07-20].. |
21 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9. 10.1109/cvpr.2015.7298594 |
22 | CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. (2017-12-05) [2022-07-20].. 10.1007/978-3-030-01234-2_49 |
23 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
24 | JADON S. A survey of loss functions for semantic segmentation[C]// Proceedings of the 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology. Piscataway: IEEE, 2020: 1-7. 10.1109/cibcb48159.2020.9277638 |
25 | DONG J, WANG W, TAN T N. CASIA image tampering detection evaluation database[C]// Proceedings of the 2013 IEEE China Summit and International Conference on Signal and Information Processing. Piscataway: IEEE, 2013: 422-426. 10.1109/chinasip.2013.6625374 |
26 | TRALIC D, ZUPANCIC I, GRGIC S, et al. CoMoFoD - new database for copy-move forgery detection[C]// Proceedings of the ELMAR-2013. Piscataway: IEEE, 2013: 49-54. |
27 | COZZOLINO D, POGGI G, VERDOLIVA L. Efficient dense-field copy-move forgery detection[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(11): 2284-2297. 10.1109/tifs.2015.2455334 |
28 | LI Y M, ZHOU J T. Fast and effective image copy-move forgery detection via hierarchical feature point matching[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(5): 1307-1322. 10.1109/tifs.2018.2876837 |
[1] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[4] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[5] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[6] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[7] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[8] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[9] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[10] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[11] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
[12] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[13] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[14] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
[15] | Yajuan ZHAO, Fanjun MENG, Xingjian XU. Review of online education learner knowledge tracing [J]. Journal of Computer Applications, 2024, 44(6): 1683-1698. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||