Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (9): 2651-2656.DOI: 10.11772/j.issn.1001-9081.2022091394
• 2022 10th CCF Conference on Big Data • Next Articles
Ziyi HE, Yan YANG(), Yiling ZHANG
Received:
2022-09-12
Revised:
2022-12-20
Accepted:
2022-12-28
Online:
2023-04-04
Published:
2023-09-10
Contact:
Yan YANG
About author:
HE Ziyi, born in 1998, M. S. candidate. His research interests include deep clustering, multi-view clustering.Supported by:
通讯作者:
杨燕
作者简介:
何子仪(1998—),男,湖北黄冈人,硕士研究生,主要研究方向:深度聚类、多视图聚类基金资助:
CLC Number:
Ziyi HE, Yan YANG, Yiling ZHANG. Multi-view clustering network with deep fusion[J]. Journal of Computer Applications, 2023, 43(9): 2651-2656.
何子仪, 杨燕, 张熠玲. 深度融合多视图聚类网络[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2651-2656.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022091394
数据集 | 样本数 | 视图维度 | 类数 |
---|---|---|---|
FM | 70 000 | 784/784 | 10 |
HW | 2 000 | 76/216 | 10 |
YTF | 10 000 | 9 075/3 025/3 025 | 41 |
Tab. 1 Detailed information of datasets
数据集 | 样本数 | 视图维度 | 类数 |
---|---|---|---|
FM | 70 000 | 784/784 | 10 |
HW | 2 000 | 76/216 | 10 |
YTF | 10 000 | 9 075/3 025/3 025 | 41 |
方法 | FM | HW | YTF | |||
---|---|---|---|---|---|---|
ACC | NMI | ACC | NMI | ACC | NMI | |
K-Means | 51.27 | 49.99 | 54.60 | 49.50 | 56.01 | 75.23 |
DEC | 51.80 | 54.60 | 70.80 | 69.13 | 59.40 | 75.68 |
DFCN | 61.80 | 63.57 | 97.15 | 93.52 | 62.53 | 80.42 |
DMJC | 61.41 | 63.41 | — | — | 61.15 | 77.40 |
DCCA | 52.74 | 53.82 | 81.43 | 78.14 | 45.19 | 60.35 |
DCCAE | 51.87 | 53.01 | 81.92 | 78.62 | 45.57 | 60.15 |
DMSC | 59.55 | 65.07 | 91.64 | 85.50 | 62.80 | 80.16 |
CMSC-DCCA | 62.95 | 68.33 | — | — | 66.15 | 82.67 |
DFMCN | 64.75 | 64.83 | 97.75 | 94.69 | 66.25 | 82.75 |
Tab. 2 Comparison of clustering effects of different methods on three datasets
方法 | FM | HW | YTF | |||
---|---|---|---|---|---|---|
ACC | NMI | ACC | NMI | ACC | NMI | |
K-Means | 51.27 | 49.99 | 54.60 | 49.50 | 56.01 | 75.23 |
DEC | 51.80 | 54.60 | 70.80 | 69.13 | 59.40 | 75.68 |
DFCN | 61.80 | 63.57 | 97.15 | 93.52 | 62.53 | 80.42 |
DMJC | 61.41 | 63.41 | — | — | 61.15 | 77.40 |
DCCA | 52.74 | 53.82 | 81.43 | 78.14 | 45.19 | 60.35 |
DCCAE | 51.87 | 53.01 | 81.92 | 78.62 | 45.57 | 60.15 |
DMSC | 59.55 | 65.07 | 91.64 | 85.50 | 62.80 | 80.16 |
CMSC-DCCA | 62.95 | 68.33 | — | — | 66.15 | 82.67 |
DFMCN | 64.75 | 64.83 | 97.75 | 94.69 | 66.25 | 82.75 |
数据集 | 模型 | ACC | NMI |
---|---|---|---|
FM | 无融合特征提取模块 | 56.93 | 62.30 |
无双层自监督模块 | 64.20 | 63.95 | |
完整模型 | 64.75 | 64.83 | |
HW | 无融合特征提取模块 | 76.35 | 72.06 |
无双层自监督模块 | 97.35 | 93.91 | |
完整模型 | 97.75 | 94.69 | |
YTF | 无融合特征提取模块 | 60.40 | 77.42 |
无双层自监督模块 | 64.50 | 81.93 | |
完整模型 | 66.25 | 82.75 |
Tab. 3 Results of ablation experiments
数据集 | 模型 | ACC | NMI |
---|---|---|---|
FM | 无融合特征提取模块 | 56.93 | 62.30 |
无双层自监督模块 | 64.20 | 63.95 | |
完整模型 | 64.75 | 64.83 | |
HW | 无融合特征提取模块 | 76.35 | 72.06 |
无双层自监督模块 | 97.35 | 93.91 | |
完整模型 | 97.75 | 94.69 | |
YTF | 无融合特征提取模块 | 60.40 | 77.42 |
无双层自监督模块 | 64.50 | 81.93 | |
完整模型 | 66.25 | 82.75 |
1 | XU D K, TIAN Y J. A comprehensive survey of clustering algorithms[J]. Annals of Data Science, 2015, 2(2):165-193. 10.1007/s40745-015-0040-1 |
2 | YANG Y, WANG H. Multi-view clustering: a survey[J]. Big Data Mining and Analytics, 2018, 1(2): 83-107. 10.26599/bdma.2018.9020003 |
3 | LIU J L, WANG C, GAO J, et al. Multi-view clustering via joint nonnegative matrix factorization[C]// Proceedings of the 2013 SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2013: 252-260. 10.1137/1.9781611972832.28 |
4 | ANDREW G, ARORA R, BILMES J, et al. Deep canonical correlation analysis[C]// Proceedings of the 30th International Conference on Machine Learning. New York: JMLR.org, 2013: 1247-1255. |
5 | WANG W R, ARORA R, LIVESCU K, et al. On deep multi-view representation learning[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 1083-1092. 10.1109/icassp.2015.7178840 |
6 | ABAVISANI M, PATEL V M. Deep multimodal subspace clustering networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(6): 1601-1614. 10.1109/jstsp.2018.2875385 |
7 | CAO X C, ZHANG C Q, FU H Z, et al. Diversity-induced multi-view subspace clustering[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 586-594. 10.1109/cvpr.2015.7298657 |
8 | ZHANG C Q, HU Q H, FU H Z, et al. Latent multi-view subspace clustering[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4333-4341. 10.1109/cvpr.2017.461 |
9 | LIU S Y, WANG S W, ZHANG P, et al. Efficient on-pass multi-view subspace clustering with consensus anchors[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2022: 7576-7584. 10.1609/aaai.v36i7.20723 |
10 | LUO P, PENG J Y, GUAN Z Y, et al. Dual regularized multi-view non-negative matrix factorization for clustering[J]. Neurocomputing, 2018, 294: 1-11. 10.1016/j.neucom.2017.10.023 |
11 | HUANG S D, KANG Z, XU Z L. Auto-weighted multi-view clustering via deep matrix decomposition[J]. Pattern Recognition, 2020, 97: No.107015. 10.1016/j.patcog.2019.107015 |
12 | NIE F P, LI J, LI X L. Self-weighted multiview clustering with multiple graphs[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2017: 2564-2570. 10.24963/ijcai.2017/357 |
13 | PENG X, HUANG Z Y, LV J C, et al. COMIC: multi-view clustering without parameter selection[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 5092-5101. |
14 | WANG Q Q, CHENG J F, GAO Q X, et al. Deep multi-view subspace clustering with unified and discriminative learning[J]. IEEE Transactions on Multimedia, 2021, 23: 3483-3493. 10.1109/tmm.2020.3025666 |
15 | SUN X K, CHENG M M, MIN C, et al. Self-supervised deep multi-view subspace clustering[C]// Proceedings of the 11th Asian Conference on Machine Learning. New York: JMLR.org, 2019: 1001-1016. |
16 | GAO Q X, LIAN H H, WANG Q Q, et al. Cross-modal subspace clustering via deep canonical correlation analysis[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 3938-3945. 10.1609/aaai.v34i04.5808 |
17 | XIE J Y, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 478-487. |
18 | GUO X F, GAO L, LIU X W, et al. Improved deep embedded clustering with local structure preservation[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2017: 1753-1759. 10.24963/ijcai.2017/243 |
19 | BO D Y, WANG X, SHI C, et al. Structural deep clustering network[C]// Proceedings of the Web Conference 2020. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2020: 1400-1410. 10.1145/3366423.3380214 |
20 | TU W X, ZHOU S H, LIU X W, et al. Deep fusion clustering network[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 9978-9987. 10.1609/aaai.v35i11.17198 |
21 | BRBIĆ M, KOPRIVA I. Multi-view low-rank sparse subspace clustering[J]. Pattern Recognition, 2018, 73: 247-258. 10.1016/j.patcog.2017.08.024 |
22 | LI Z Y, WANG Q Q, TAO Z Q, et al. Deep adversarial multi-view clustering network[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 2952-2958. 10.24963/ijcai.2019/409 |
23 | XU J, REN Y Z, LI G F, et al. Deep embedded multi-view clustering with collaborative training[J]. Information Sciences, 2021, 573: 279-290. 10.1016/j.ins.2020.12.073 |
24 | PAN E L, KANG Z. Multi-view contrastive graph clustering[C/OL]// Proceedings of the 35th Conference on Neural Information Processing Systems [2022-08-12].. |
25 | XIAO H, RASUL K, VOLLGRAF R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms[EB/OL]. (2017-09-15) [2022-03-25].. |
26 | DUA D, GRAFF C. UCI machine learning repository[DB/OL]. [2021-11-08].. |
27 | YANG J W, PARIKH D, BATRA D. Joint unsupervised learning of deep representations and image clusters[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 5147-5156. 10.1109/cvpr.2016.556 |
28 | LIN B Q, XIE Y, QU Y Y, et al. Deep multi-view clustering via multiple embedding [EB/OL]. [2022-02-14]. . |
[1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[2] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[3] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[4] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[5] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[6] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[7] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[8] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[9] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[10] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[11] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[12] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
[13] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[14] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[15] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||