1 |
王一宁,赵青杉,秦品乐,等. 基于轻量密集神经网络的医学图像超分辨率重建算法[J]. 计算机应用, 2022, 42(8): 2586-2592. 10.11772/j.issn.1001-9081.2021061093
|
|
WANG Y N, ZHAO Q S, QIN P L, et al. Super-resolution reconstruction algorithm of medical image based on lightweight dense neural network[J]. Journal of Computer Applications, 2022, 42(8): 2586-2592. 10.11772/j.issn.1001-9081.2021061093
|
2 |
KEYS R. Bicubic interpolation[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(1): 1153-1160. 10.1109/tassp.1981.1163711
|
3 |
王汇丰,徐岩,魏一铭,等. 基于并联卷积与残差网络的图像超分辨率重建[J]. 计算机应用, 2022, 42(5): 1570-1576.
|
|
WANG H F, XU Y, WEI Y M, et al. Image super-resolution reconstruction based on parallel convolution and residual network[J]. Journal of Computer Applications, 2022, 42(5): 1570-1576.
|
4 |
DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution [C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8692. Cham: Springer, 2014: 184-199.
|
5 |
DONG C, LOY C C, TANG X, et al. Accelerating the super-resolution convolutional neural network[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9906. Cham: Springer, 2016: 391- 407.
|
6 |
KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1637-1645. 10.1109/cvpr.2016.181
|
7 |
KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1646-1654. 10.1109/cvpr.2016.182
|
8 |
LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 1132-1140. 10.1109/cvprw.2017.151
|
9 |
TARG S, ALMEIDA D, LYMAN K. ResNet in ResNet: generalizing residual architectures [EB/OL]. (2016-03-25) [2021-12-12]. .
|
10 |
LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 105-114. 10.1109/cvpr.2017.19
|
11 |
WANG X, YU K, WU S, et al. ESRGAN: enhanced super-resolution generative adversarial networks [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11133. Cham: Springer, 2019: 63-79.
|
12 |
LIU A, LIU Y, GU J, et al. Blind image super-resolution: a survey and beyond [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5): 5461-5480. 10.1109/tpami.2023.3312313
|
13 |
ZHANG K, ZUO W, ZHANG L. Learning a single convolutional super-resolution network for multiple degradations[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3262-3271. 10.1109/cvpr.2018.00344
|
14 |
WEI Y, GU S, LI Y, et al. Unsupervised real-world image super resolution via domain-distance aware training [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13380-13389. 10.1109/cvpr46437.2021.01318
|
15 |
JI X, CAO Y, TAI Y, et al. Real-world super-resolution via kernel estimation and noise injection [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 1914-1923. 10.1109/cvprw50498.2020.00241
|
16 |
ZHANG K, LIANG J, VAN GOOL L, et al. Designing a practical degradation model for deep blind image super-resolution[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 4771-4780. 10.1109/iccv48922.2021.00475
|
17 |
ZHAO M, ZHONG S, FU X, et al. Deep residual shrinkage networks for fault diagnosis [J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681-4690. 10.1109/tii.2019.2943898
|
18 |
CHEN C, XIONG Z, TIAN X, et al. Camera lens super-resolution[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1652-1660. 10.1109/cvpr.2019.00175
|
19 |
CAI J, ZENG H, YONG H, et al. Toward real-world single image super-resolution: a new benchmark and a new model[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3086-3095. 10.1109/iccv.2019.00318
|
20 |
刘丛,王亚新. 基于双并行残差网络的遥感图像超分辨率重建[J]. 模式识别与人工智能, 2021, 34(8): 760-767.
|
|
LIU C, WANG Y X. Remote sensing image super-resolution reconstruction based on dual-parallel residual network [J]. Pattern Recognition and Artificial Intelligence, 2021, 34(8): 760-767.
|
21 |
WANG X, XIE L, DONG C, et al. Real-ESRGAN: training real-world blind super-resolution with pure synthetic data[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021:1905-1914. 10.1109/iccvw54120.2021.00217
|
22 |
SCHÖNFELD E, SCHIELE B, KHOREVA A. A U-Net based discriminator for generative adversarial networks [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8204-8213. 10.1109/cvpr42600.2020.00823
|
23 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241.
|
24 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2021-12-12]..
|
25 |
JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9906. Cham: Springer, 2016: 694-711.
|
26 |
AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 1122-1131. 10.1109/cvprw.2017.150
|