Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (12): 3911-3917.DOI: 10.11772/j.issn.1001-9081.2022111704
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Feiyu LIAN1,2, Liang ZHANG1,2(), Jiedong WANG3, Yukang JIN1,2, Yu CHAI1,2
Received:
2022-11-15
Revised:
2023-03-13
Accepted:
2023-03-20
Online:
2023-07-12
Published:
2023-12-10
Contact:
Liang ZHANG
About author:
LIAN Feiyu, born in 1997, M. S. candidate. His research interests include three-dimensional point cloud processing, point cloud segmentation.Supported by:
廉飞宇1,2, 张良1,2(), 王杰栋3, 靳于康1,2, 柴玉1,2
通讯作者:
张良
作者简介:
廉飞宇(1997—),男,山东临沂人,硕士研究生,主要研究方向:三维点云处理、点云分割基金资助:
CLC Number:
Feiyu LIAN, Liang ZHANG, Jiedong WANG, Yukang JIN, Yu CHAI. Outdoor scene point cloud segmentation model based on graph model and attention mechanism[J]. Journal of Computer Applications, 2023, 43(12): 3911-3917.
廉飞宇, 张良, 王杰栋, 靳于康, 柴玉. 基于图模型与注意力机制的室外场景点云分割模型[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3911-3917.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022111704
特征名称 | 维度 | 定义 |
---|---|---|
偏移量均值 | 3 | |
偏移量标准差 | 3 | |
重心偏移量 | 3 | |
长度比 | 1 | |
面积比 | 1 | |
体积比 | 1 | |
点数比 | 1 |
Tab.1 Hyperedge feature definition
特征名称 | 维度 | 定义 |
---|---|---|
偏移量均值 | 3 | |
偏移量标准差 | 3 | |
重心偏移量 | 3 | |
长度比 | 1 | |
面积比 | 1 | |
体积比 | 1 | |
点数比 | 1 |
模型 | OA | mAA | mIoU |
---|---|---|---|
SPG-Net | 94.4 | 77.8 | 66.6 |
A-Edge-SPG | 96.2 | 80.6 | 71.7 |
Tab. 2 Comparison of OA, mAA and mIoU between two models
模型 | OA | mAA | mIoU |
---|---|---|---|
SPG-Net | 94.4 | 77.8 | 66.6 |
A-Edge-SPG | 96.2 | 80.6 | 71.7 |
类别 | SPG-Net | A-Edge-SPG |
---|---|---|
人造地面 | 98.1 | 98.2 |
自然地面 | 96.4 | 97.5 |
高植被 | 77.1 | 84.7 |
矮植被 | 56.5 | 60.9 |
建筑 | 96.6 | 98.7 |
人造景观 | 36.2 | 37.8 |
移动物体 | 68.1 | 68.5 |
汽车 | 94.3 | 99.0 |
Tab.3 mAA comparison of different types
类别 | SPG-Net | A-Edge-SPG |
---|---|---|
人造地面 | 98.1 | 98.2 |
自然地面 | 96.4 | 97.5 |
高植被 | 77.1 | 84.7 |
矮植被 | 56.5 | 60.9 |
建筑 | 96.6 | 98.7 |
人造景观 | 36.2 | 37.8 |
移动物体 | 68.1 | 68.5 |
汽车 | 94.3 | 99.0 |
邻近点数k | 总体分割精度/% | 平均分割精度/% |
---|---|---|
5 | 95.6 | 80.2 |
10 | 96.2 | 80.6 |
15 | 95.3 | 79.5 |
20 | 94.3 | 79.0 |
Tab. 4 Results of segmentation accuracy for different nearest neighbor numbers
邻近点数k | 总体分割精度/% | 平均分割精度/% |
---|---|---|
5 | 95.6 | 80.2 |
10 | 96.2 | 80.6 |
15 | 95.3 | 79.5 |
20 | 94.3 | 79.0 |
1 | YANG B, WEI Z, LI Q, et al. Semiautomated building facade footprint extraction from mobile LiDAR point clouds[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 766-770. 10.1109/lgrs.2012.2222342 |
2 | YANG B, DONG Z, ZHAO G, et al. Hierarchical extraction of urban objects from mobile laser scanning data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 99: 45-57. 10.1016/j.isprsjprs.2014.10.005 |
3 | ZHANG J, LIN X. Advances in fusion of optical imagery and LiDAR point cloud applied to photogrammetry and remote sensing[J]. International Journal of Image and Data Fusion, 2017, 8(1): 1-31. 10.1080/19479832.2016.1160960 |
4 | 范士俊,张爱武,胡少兴,等. 基于随机森林的机载激光全波形点云数据分类方法[J]. 中国激光, 2013, 40(9): No.0914001. 10.3788/cjl201340.0914001 |
FAN S J, ZHANG A W, HU S X, et al. A method of classification for airborne full waveform LiDAR data based on random forest[J]. Chinese Journal of Lasers, 2013, 40(9): No.0914001. 10.3788/cjl201340.0914001 | |
5 | 杨必胜,梁福逊,黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报, 2017, 46(10): 1509-1516. 10.11947/j.AGCS.2017.20170351 |
YANG B S, LIANG F X, HUANG R G. Progress, challenges and perspectives of 3D LiDAR point cloud processing[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1509-1516. 10.11947/j.AGCS.2017.20170351 | |
6 | 郭波,黄先锋,张帆,等. 顾及空间上下文关系的JointBoost点云分类及特征降维[J]. 测绘学报, 2013, 42(5): 715-721. |
GUO B, HUANG X F, ZHANG F, et al. Points cloud classification using JointBoost combined with contextual information for feature reduction[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(5): 715-721. | |
7 | WEINMANN M, JUTZI B, HINZ S, et al. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105: 286-304. 10.1016/j.isprsjprs.2015.01.016 |
8 | LIU W, SUN J, LI W, et al. Deep learning on point clouds and its application: a survey [J]. Sensors, 2019, 19(19): No.4188. 10.3390/s19194188 |
9 | BENGIO Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning, 2009, 2(1): 1-127. 10.1561/2200000006 |
10 | 杨柳,刘启亮,袁浩涛. 城市激光点云语义分割典型方法对比研究[J]. 地理与地理信息科学, 2021, 37(1):17-25. 10.3969/j.issn.1672-0504.2021.01.004 |
YANG L, LIU Q L, YUAN H T. A comparative study on typical methods for semantic segmentation of laser point clouds in urban areas [J]. Geography and Geo-Information Science, 2021, 37(1):17-25. 10.3969/j.issn.1672-0504.2021.01.004 | |
11 | MATURANA D, SCHERER S. VoxNet: a 3D convolutional neural network for real-time object recognition [C]// Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2015: 922-928. 10.1109/iros.2015.7353481 |
12 | WU Z, SONG S, KHOSLA A, et al. 3D ShapeNets: a deep representation for volumetric shapes[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1912-1920. 10.1109/cvpr.2015.7298801 |
13 | YI L, KIM V G, CEYLAN D, et al. A scalable active framework for region annotation in 3D shape collections[J]. ACM Transactions on Graphics, 2016, 35(6): No.210. 10.1145/2980179.2980238 |
14 | QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85. 10.1109/cvpr.2017.16 |
15 | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017:5101-5114. |
16 | WANG Y, SUN Y, LIU Z, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): No.146. 10.1145/3326362 |
17 | 赵中阳,程英蕾,释小松,等. 基于多尺度特征和PointNet的LiDAR点云地物分类方法[J]. 激光与光电子学进展, 2019, 56(5): No.052804. 10.3788/lop56.052804 |
ZHAO Z Y, CHENG Y L, SHI X S, et al. Terrain classification of LiDAR point cloud method based on multi-scale features and PointNet [J]. Laser and Optoelectronics Progress, 2019, 56(5): No.052804. 10.3788/lop56.052804 | |
18 | 马京晖,潘巍,王茹. 基于K-means聚类的三维点云分类[J]. 计算机工程与应用, 2020, 56(17):181-186. 10.3778/j.issn.1002-8331.1909-0305 |
MA J H, PAN W, WANG R. 3D point cloud classification based on K-means clustering[J]. Computer Engineering and Applications, 2020, 56(17):181-186. 10.3778/j.issn.1002-8331.1909-0305 | |
19 | 罗海峰,方莉娜,陈崇成,等. 基于DBN的车载激光点云路侧多目标提取[J]. 测绘学报, 2018, 47(2): 234-246. 10.11947/j.AGCS.2018.20170524 |
LUO H F, FANG L N, CHEN C C, et al. Roadside multiple objects extraction from mobile laser scanning point cloud based on DBN[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2): 234-246. 10.11947/j.AGCS.2018.20170524 | |
20 | WANG Z, ZHANG L, ZHANG L, et al. A Deep Neural Network with Spatial Pooling (DNNSP) for 3-D point cloud classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4594-4604. 10.1109/tgrs.2018.2829625 |
21 | LANDRIEU L, SIMONOVSKY M. Large-scale point cloud semantic segmentation with superpoint graphs [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4558-4567. 10.1109/cvpr.2018.00479 |
22 | FILLIN S, PFEIFER N. Segmentation of airborne laser scanning data using a slope adaptive neighborhood [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(2): 71-80. 10.1016/j.isprsjprs.2005.10.005 |
23 | DEMANTKÉ J, MALLET C, DAVID N, et al. Dimensionality based scale selection in 3D lidar point clouds[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, 38(5): 97-102. |
24 | KOLMOGOROV V, ZABIN R. What energy functions can be minimized via graph cuts?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 147-159. 10.1109/tpami.2004.1262177 |
25 | LANDRIEU L, OBOZINSKI G. Cut Pursuit: fast algorithms to learn piecewise constant functions on general weighted graphs [J]. SIAM Journal on Imaging Sciences, 2017, 10(4): 1724-1766. 10.1137/17m1113436 |
26 | 任欢,王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(S1):1-6. 10.11772/j.issn.1001-9081.2020101634 |
REN H, WANG X G. Review of attention mechanisms[J]. Journal of Computer Applications, 2021, 41(S1): 1-6. 10.11772/j.issn.1001-9081.2020101634 | |
27 | 朱张莉,饶元,吴渊,等.注意力机制在深度学习中的研究进展[J]. 中文信息学报, 2019, 33(6): 1-11. 10.3969/j.issn.1003-0077.2019.06.001 |
ZHU Z L, RAO Y, WU Y, et al. Research progress of attention mechanism in deep learning [J]. Journal of Chinese Information Processing, 2019, 33(6): 1-11. 10.3969/j.issn.1003-0077.2019.06.001 | |
28 | 杨丽,吴雨茜,王俊丽,等.循环神经网络研究综述[J]. 计算机应用, 2018, 38(S2): 1-6, 26. |
YANG L, WU Y X, WANG J L, et al. Research on recurrent neural network[J]. Journal of Computer Applications, 2018, 38(S2): 1-6, 26. | |
29 | 马超. 融合卷积神经网络和循环神经网络的车轮目标检测[J]. 测绘通报, 2020(8):139-143. |
MA C. Wheel detection integrating convolutional neural network and recurrent neural network[J]. Bulletin of Surveying and Mapping, 2020(8):139-143. | |
30 | HACKEL T, SAVINOV N, LADICKY L, et al. Semantic3D.net: a new large-scale point cloud classification benchmark [J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, IV-1/W1: 91-98. 10.5194/isprs-annals-iv-1-w1-91-2017 |
31 | BENTLEY J L. Multidimensional binary search trees used for associative searching [J]. Communications of the ACM, 1975, 18(9): 509-517. 10.1145/361002.361007 |
[1] | Yuwei DING, Hongbo SHI, Jie LI, Min LIANG. Image denoising network based on local and global feature decoupling [J]. Journal of Computer Applications, 2024, 44(8): 2571-2579. |
[2] | Boyue WANG, Yingxiang LI, Jiandan ZHONG. Segmentation network for day and night ground-based cloud images based on improved Res-UNet [J]. Journal of Computer Applications, 2024, 44(4): 1310-1316. |
[3] | Wei LI, Ling CHEN, Xiuyuan XU, Min ZHU, Jixiang GUO, Kai ZHOU, Hao NIU, Yuchen ZHANG, Shanye YI, Yi ZHANG, Fengming LUO. Interstitial lung disease segmentation algorithm based on multi-task learning [J]. Journal of Computer Applications, 2024, 44(4): 1285-1293. |
[4] | Pengfei ZHANG, Litao HAN, Hengjian FENG, Hongmei LI. Point cloud semantic segmentation based on attention mechanism and global feature optimization [J]. Journal of Computer Applications, 2024, 44(4): 1086-1092. |
[5] | Ning WU, Yangyang LUO, Huajie XU. Semantic segmentation method for remote sensing images based on multi-scale feature fusion [J]. Journal of Computer Applications, 2024, 44(3): 737-744. |
[6] | Ziyi LI, Tingting QU, Qianpeng CHONG, Jindong XU. Remote sensing image segmentation network based on fuzzy multiscale features [J]. Journal of Computer Applications, 2024, 44(11): 3581-3586. |
[7] | Yongjiang LIU, Bin CHEN. Pixel-level unsupervised industrial anomaly detection based on multi-scale memory bank [J]. Journal of Computer Applications, 2024, 44(11): 3587-3594. |
[8] | Qiumei ZHENG, Weiwei NIU, Fenghua WANG, Dan ZHAO. Dual-branch real-time semantic segmentation network based on detail enhancement [J]. Journal of Computer Applications, 2024, 44(10): 3058-3066. |
[9] | Di ZHOU, Zili ZHANG, Jia CHEN, Xinrong HU, Ruhan HE, Jun ZHANG. Stomach cancer image segmentation method based on EfficientNetV2 and object-contextual representation [J]. Journal of Computer Applications, 2023, 43(9): 2955-2962. |
[10] | Shuai ZHENG, Xiaolong ZHANG, He DENG, Hongwei REN. 3D liver image segmentation method based on multi-scale feature fusion and grid attention mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2303-2310. |
[11] | Yubin GUO, Xiang WEN, Pan LIU, Ximing LI. Cross-modal person re-identification relation network based on dual-stream structure [J]. Journal of Computer Applications, 2023, 43(6): 1803-1810. |
[12] | Bin LU, Jielin LIU. Semantic segmentation for 3D point clouds based on feature enhancement [J]. Journal of Computer Applications, 2023, 43(6): 1818-1825. |
[13] | Zhixiong ZHENG, Jianhua LIU, Shuihua SUN, Ge XU, Honghui LIN. Aspect-based sentiment analysis model fused with multi-window local information [J]. Journal of Computer Applications, 2023, 43(6): 1796-1802. |
[14] | Quan YUAN, Yunpeng XU, Chengliang TANG. Document-level relation extraction method based on path labels [J]. Journal of Computer Applications, 2023, 43(4): 1029-1035. |
[15] | Xuedong HE, Shibin XUAN, Kuan WANG, Mengnan CHEN. DeepLabV3+ image segmentation algorithm fusing cumulative distribution function and channel attention mechanism [J]. Journal of Computer Applications, 2023, 43(3): 936-942. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||