Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (5): 1612-1619.DOI: 10.11772/j.issn.1001-9081.2022040620
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Lihua SHEN(), Bo LI
Received:
2022-05-07
Revised:
2022-07-18
Accepted:
2022-07-22
Online:
2022-08-18
Published:
2023-05-10
Contact:
Lihua SHEN
About author:
SHEN Lihua, born in 1999, M. S. candidate. Her research interests include computer vision, medical image processing.通讯作者:
申利华
作者简介:
申利华(1999—),女,湖北恩施人,硕士研究生,主要研究方向:计算机视觉、医学图像处理 2469366101@qq.comCLC Number:
Lihua SHEN, Bo LI. Super-resolution reconstruction of lung CT images based on feature pyramid network and dense network[J]. Journal of Computer Applications, 2023, 43(5): 1612-1619.
申利华, 李波. 基于特征金字塔网络和密集网络的肺部CT图像超分辨率重建[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1612-1619.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022040620
图像 | 比例 | 1次融合(m1) | 2次融合(m2) | 3次融合(m3) | |||
---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
1 | 36.91 | 0.957 | 37.17 | 0.958 | 36.74 | 0.956 | |
27.52 | 0.897 | 28.14 | 0.903 | 27.92 | 0.893 | ||
24.08 | 0.762 | 24.11 | 0.762 | 24.09 | 0.762 | ||
2 | 26.28 | 0.752 | 26.41 | 0.756 | 26.12 | 0.743 | |
21.59 | 0.602 | 21.62 | 0.603 | 21.66 | 0.602 | ||
20.28 | 0.523 | 20.27 | 0.523 | 20.27 | 0.523 | ||
3 | 35.48 | 0.930 | 35.42 | 0.929 | 35.35 | 0.928 | |
26.42 | 0.813 | 26.46 | 0.814 | 26.48 | 0.813 | ||
24.63 | 0.738 | 24.64 | 0.739 | 24.63 | 0.738 |
Tab. 1 PSNR and SSIM of test images under different fusion times
图像 | 比例 | 1次融合(m1) | 2次融合(m2) | 3次融合(m3) | |||
---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
1 | 36.91 | 0.957 | 37.17 | 0.958 | 36.74 | 0.956 | |
27.52 | 0.897 | 28.14 | 0.903 | 27.92 | 0.893 | ||
24.08 | 0.762 | 24.11 | 0.762 | 24.09 | 0.762 | ||
2 | 26.28 | 0.752 | 26.41 | 0.756 | 26.12 | 0.743 | |
21.59 | 0.602 | 21.62 | 0.603 | 21.66 | 0.602 | ||
20.28 | 0.523 | 20.27 | 0.523 | 20.27 | 0.523 | ||
3 | 35.48 | 0.930 | 35.42 | 0.929 | 35.35 | 0.928 | |
26.42 | 0.813 | 26.46 | 0.814 | 26.48 | 0.813 | ||
24.63 | 0.738 | 24.64 | 0.739 | 24.63 | 0.738 |
图像 | 比例 | VDSR | VDSR_RDB | VDSR_RCN | |||
---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
1 | 34.89 | 0.949 | 34.74 | 0.949 | 36.59 | 0.957 | |
29.78 | 0.836 | 29.06 | 0.842 | 30.64 | 0.872 | ||
24.03 | 0.761 | 24.04 | 0.761 | 24.07 | 0.762 | ||
2 | 25.91 | 0.761 | 25.87 | 0.761 | 26.81 | 0.777 | |
21.64 | 0.604 | 21.74 | 0.606 | 21.61 | 0.603 | ||
20.19 | 0.521 | 20.18 | 0.521 | 20.24 | 0.522 | ||
3 | 34.45 | 0.924 | 34.25 | 0.924 | 35.52 | 0.931 | |
26.49 | 0.814 | 26.62 | 0.815 | 26.38 | 0.814 | ||
24.58 | 0.737 | 24.56 | 0.737 | 24.61 | 0.738 |
Tab. 2 Experimental results of VDSR, VDSR_RDB and VDSR_RCN
图像 | 比例 | VDSR | VDSR_RDB | VDSR_RCN | |||
---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
1 | 34.89 | 0.949 | 34.74 | 0.949 | 36.59 | 0.957 | |
29.78 | 0.836 | 29.06 | 0.842 | 30.64 | 0.872 | ||
24.03 | 0.761 | 24.04 | 0.761 | 24.07 | 0.762 | ||
2 | 25.91 | 0.761 | 25.87 | 0.761 | 26.81 | 0.777 | |
21.64 | 0.604 | 21.74 | 0.606 | 21.61 | 0.603 | ||
20.19 | 0.521 | 20.18 | 0.521 | 20.24 | 0.522 | ||
3 | 34.45 | 0.924 | 34.25 | 0.924 | 35.52 | 0.931 | |
26.49 | 0.814 | 26.62 | 0.815 | 26.38 | 0.814 | ||
24.58 | 0.737 | 24.56 | 0.737 | 24.61 | 0.738 |
图像 | 比例 | n1 | n2 | n3 | n4 | n5 | n6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
1 | 36.62 | 0.956 | 37.09 | 0.957 | 37.07 | 0.957 | 37.04 | 0.957 | 37.17 | 0.958 | 36.82 | 0.956 | |
27.51 | 0.887 | 28.06 | 0.902 | 28.04 | 0.902 | 27.85 | 0.898 | 28.14 | 0.903 | 27.63 | 0.892 | ||
24.08 | 0.762 | 24.09 | 0.761 | 24.09 | 0.762 | 24.09 | 0.762 | 24.11 | 0.762 | 24.08 | 0.762 | ||
2 | 26.08 | 0.743 | 26.27 | 0.749 | 26.33 | 0.749 | 26.33 | 0.751 | 26.41 | 0.756 | 26.09 | 0.742 | |
21.61 | 0.601 | 21.57 | 0.601 | 21.59 | 0.601 | 21.61 | 0.601 | 21.62 | 0.603 | 21.61 | 0.602 | ||
20.28 | 0.523 | 20.26 | 0.522 | 20.27 | 0.522 | 20.26 | 0.522 | 20.27 | 0.523 | 20.25 | 0.521 | ||
3 | 35.38 | 0.928 | 35.41 | 0.929 | 35.42 | 0.929 | 35.41 | 0.929 | 35.42 | 0.929 | 35.37 | 0.928 | |
26.51 | 0.813 | 26.43 | 0.812 | 26.45 | 0.812 | 26.46 | 0.812 | 26.46 | 0.814 | 26.45 | 0.813 | ||
24.63 | 0.738 | 24.62 | 0.737 | 24.63 | 0.737 | 24.61 | 0.736 | 24.64 | 0.739 | 24.62 | 0.738 |
Tab. 3 PSNR and SSIM of test images under different RCN numbers
图像 | 比例 | n1 | n2 | n3 | n4 | n5 | n6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
1 | 36.62 | 0.956 | 37.09 | 0.957 | 37.07 | 0.957 | 37.04 | 0.957 | 37.17 | 0.958 | 36.82 | 0.956 | |
27.51 | 0.887 | 28.06 | 0.902 | 28.04 | 0.902 | 27.85 | 0.898 | 28.14 | 0.903 | 27.63 | 0.892 | ||
24.08 | 0.762 | 24.09 | 0.761 | 24.09 | 0.762 | 24.09 | 0.762 | 24.11 | 0.762 | 24.08 | 0.762 | ||
2 | 26.08 | 0.743 | 26.27 | 0.749 | 26.33 | 0.749 | 26.33 | 0.751 | 26.41 | 0.756 | 26.09 | 0.742 | |
21.61 | 0.601 | 21.57 | 0.601 | 21.59 | 0.601 | 21.61 | 0.601 | 21.62 | 0.603 | 21.61 | 0.602 | ||
20.28 | 0.523 | 20.26 | 0.522 | 20.27 | 0.522 | 20.26 | 0.522 | 20.27 | 0.523 | 20.25 | 0.521 | ||
3 | 35.38 | 0.928 | 35.41 | 0.929 | 35.42 | 0.929 | 35.41 | 0.929 | 35.42 | 0.929 | 35.37 | 0.928 | |
26.51 | 0.813 | 26.43 | 0.812 | 26.45 | 0.812 | 26.46 | 0.812 | 26.46 | 0.814 | 26.45 | 0.813 | ||
24.63 | 0.738 | 24.62 | 0.737 | 24.63 | 0.737 | 24.61 | 0.736 | 24.64 | 0.739 | 24.62 | 0.738 |
图像 | 比例 | Bicubic | SRCNN | FSRCNN | VDSR | LapSRN | FDSR(RCN=5) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
1 | 29.78 | 0.915 | 36.08 | 0.955 | 36.28 | 0.956 | 36.81 | 0.956 | 37.02 | 0.956 | 37.17 | 0.958 | |
25.56 | 0.823 | 27.23 | 0.872 | 27.26 | 0.876 | 27.54 | 0.881 | 27.86 | 0.893 | 28.14 | 0.903 | ||
24.07 | 0.758 | 24.02 | 0.761 | 24.22 | 0.762 | 24.32 | 0.763 | 24.40 | 0.764 | 24.11 | 0.762 | ||
2 | 23.67 | 0.696 | 26.36 | 0.769 | 26.39 | 0.769 | 26.41 | 0.756 | 26.41 | 0.762 | 26.41 | 0.756 | |
21.66 | 0.592 | 21.69 | 0.605 | 21.70 | 0.605 | 21.71 | 0.606 | 22.83 | 0.609 | 21.62 | 0.603 | ||
20.17 | 0.521 | 20.18 | 0.521 | 20.21 | 0.520 | 20.21 | 0.522 | 20.25 | 0.523 | 20.27 | 0.523 | ||
3 | 29.96 | 0.888 | 35.20 | 0.928 | 35.34 | 0.927 | 35.41 | 0.928 | 35.42 | 0.928 | 35.42 | 0.929 | |
26.42 | 0.803 | 26.53 | 0.815 | 26.54 | 0.815 | 26.55 | 0.816 | 26.53 | 0.814 | 26.46 | 0.814 | ||
24.58 | 0.735 | 24.54 | 0.736 | 24.59 | 0.737 | 24.61 | 0.737 | 24.62 | 0.738 | 24.64 | 0.739 |
Tab. 4 Comparison of FDSR and different deep learning methods on PSNR and SSIM
图像 | 比例 | Bicubic | SRCNN | FSRCNN | VDSR | LapSRN | FDSR(RCN=5) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
1 | 29.78 | 0.915 | 36.08 | 0.955 | 36.28 | 0.956 | 36.81 | 0.956 | 37.02 | 0.956 | 37.17 | 0.958 | |
25.56 | 0.823 | 27.23 | 0.872 | 27.26 | 0.876 | 27.54 | 0.881 | 27.86 | 0.893 | 28.14 | 0.903 | ||
24.07 | 0.758 | 24.02 | 0.761 | 24.22 | 0.762 | 24.32 | 0.763 | 24.40 | 0.764 | 24.11 | 0.762 | ||
2 | 23.67 | 0.696 | 26.36 | 0.769 | 26.39 | 0.769 | 26.41 | 0.756 | 26.41 | 0.762 | 26.41 | 0.756 | |
21.66 | 0.592 | 21.69 | 0.605 | 21.70 | 0.605 | 21.71 | 0.606 | 22.83 | 0.609 | 21.62 | 0.603 | ||
20.17 | 0.521 | 20.18 | 0.521 | 20.21 | 0.520 | 20.21 | 0.522 | 20.25 | 0.523 | 20.27 | 0.523 | ||
3 | 29.96 | 0.888 | 35.20 | 0.928 | 35.34 | 0.927 | 35.41 | 0.928 | 35.42 | 0.928 | 35.42 | 0.929 | |
26.42 | 0.803 | 26.53 | 0.815 | 26.54 | 0.815 | 26.55 | 0.816 | 26.53 | 0.814 | 26.46 | 0.814 | ||
24.58 | 0.735 | 24.54 | 0.736 | 24.59 | 0.737 | 24.61 | 0.737 | 24.62 | 0.738 | 24.64 | 0.739 |
1 | WANG C P, WANG S M, XIA Z Q, et al. Medical image super-resolution via deep residual neural network in the shearlet domain[J]. Multimedia Tools and Applications, 2021, 80(17):26637-26655. |
2 | YU J F, GAO X B, TAO D C, et al. A unified learning framework for single image super-resolution[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(4):780-792. 10.1109/tnnls.2013.2281313 |
3 | 段友祥,张含笑,孙歧峰,等. 基于拉普拉斯金字塔生成对抗网络的图像超分辨率重建算法[J]. 计算机应用, 2021, 41(4): 1020-1026. 10.11772/j.issn.1001-9081.2020081299 |
DUAN Y X, ZHANG H X, SUN Q F, et al. Image super-resolution reconstruction algorithm based on Laplacian pyramid generative adversarial network[J]. Journal of Computer Applications, 2021, 41(4): 1020-1026. 10.11772/j.issn.1001-9081.2020081299 | |
4 | DONG C, LOY C C, HE K M, et al. Learning a deep convolutional network for image super-resolution[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8692. Cham: Springer, 2014:184-199. |
5 | UMEHARA K, OTA J, ISHIDA T. Application of super-resolution convolutional neural network for enhancing image resolution in chest CT[J]. Journal of Digital Imaging, 2018, 31(4):441-450. 10.1007/s10278-017-0033-z |
6 | ABDEL-ZAHER A M, ELDEIB A M. Breast cancer classification using deep belief networks[J]. Expert Systems with Applications, 2016, 46:139-144. 10.1016/j.eswa.2015.10.015 |
7 | PRIYA C L, GOWTHAMI D, POONGUZHALI S. Lung pattern classification for interstitial lung diseases using an ANN-back propagation network [C]// Proceedings of the 2017 International Conference on Communication and Signal Processing. Piscataway: IEEE, 2017: 1917-1922. 10.1109/iccsp.2017.8286732 |
8 | DONG C, LOY C C, TANG X O. Accelerating the super-resolution convolutional neural network[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9906. Cham: Springer, 2016:391-407. |
9 | SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1874-1883. 10.1109/cvpr.2016.207 |
10 | ZHANG D, ZHU B L, ZHONG Y H. MBMR-Net: multi-branches multi-resolution cross-projection network for single image super-resolution[J]. Applied Intelligence, 2022, 52(11):12975-12989. 10.1007/s10489-022-03322-9 |
11 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:770-778. 10.1109/cvpr.2016.90 |
12 | KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:1637-1645. 10.1109/cvpr.2016.181 |
13 | DU Y B, JIA R S, CUI Z, et al. X-ray image super-resolution reconstruction based on a multiple distillation feedback network[J]. Applied Intelligence, 2021, 51(7): 5081-5094. 10.1007/s10489-020-02123-2 |
14 | LEDING C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 105-114. 10.1109/cvpr.2017.19 |
15 | WANG Y Q, LI X, NAN F Z, et al. Image super-resolution reconstruction based on generative adversarial network model with feedback and attention mechanisms[J]. Multimedia Tools and Applications, 2022, 81(5):6633-6652. 10.1007/s11042-021-11679-1 |
16 | YANG X, LI X C, LI Z Q, et al. Image super-resolution based on deep neural network of multiple attention mechanism[J]. Journal of Visual Communication and Image Representation, 2021, 75: No.103019. 10.1016/j.jvcir.2021.103019 |
17 | LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:5835-5843. 10.1109/cvpr.2017.618 |
18 | TANG R, CHEN L H, ZHANG R Z, et al. Medical image super-resolution with Laplacian dense network[J]. Multimedia Tools and Applications, 2020, 81(3):3131-3144. |
19 | 常志国,郭茹侠,李晶,等. 基于稀疏表示和近邻嵌入的图像超分辨率重构[J]. 计算机测量与控制, 2016, 24(5):173-177. 10.16526/j.cnki.11-4762/tp.2016.05.050 |
CHANG Z G, GUO R X, LI J, et al. Image super-resolution reconstruction based on sparse representation and neighbor embedding[J]. Computer Measurement and Control, 2016, 24(5):173-177. 10.16526/j.cnki.11-4762/tp.2016.05.050 | |
20 | KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:1646-1654. 10.1109/cvpr.2016.182 |
21 | YANG X, ZHANG Y F, LI Tet al. Image super-resolution based on the down-sampling iterative module and deep CNN[J]. Circuits, Systems, and Signal Processing, 2021, 40(7):3437-3455. 10.1007/s00034-020-01630-4 |
22 | LI Q Q, GUO X M, HAN J X, et al. Single image super-resolution reconstruction algorithm based on deep learning[J]. Journal of Physics: Conference Series, 2021, 1995: No.012034. 10.1088/1742-6596/1995/1/012034 |
23 | QIU D F, ZHENG L X, ZHU J Q, et al. Multiple improved residual networks for medical image super-resolution[J]. Future Generation Computer Systems, 2021, 116:200-208. 10.1016/j.future.2020.11.001 |
24 | 刘朋伟,高媛,秦品乐,等. 基于多感受野的生成对抗网络医学MRI影像超分辨率重建[J]. 计算机应用, 2022, 42(3): 938-945. |
LIU P W, GAO Y, QIN P L, et al. Medical MRI image super-resolution reconstruction based on multi-receptive field generative adversarial network[J]. Journal of Computer Applications, 2022, 42(3): 938-945. | |
25 | ZHANG Y B, ZHANG Z H, LI T L. Research on image super-resolution reconstruction based on deep learning[J]. Journal of Physics Conference Series, 2021, 1802(4): No.042034. 10.1088/1742-6596/1802/4/042034 |
26 | LIU F Q, YU Q, CHEN L H, et al. Aerial image super-resolution based on deep recursive dense network for disaster area surveillance[J]. Personal and Ubiquitous Computing, 2022, 26(4):1205-1214. 10.1007/s00779-020-01516-x |
27 | ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 294-310. |
28 | WANG X T, YU K, WU S X, et al. ESRGAN: enhanced super-resolution generative adversarial networks[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11133. Cham: Springer, 2019: 63-79. |
29 | YANG X, ZHANG Y F, GUO Y Q, et al. An image super-resolution deep learning network based on multi-level feature extraction module[J]. Multimedia Tools and Applications, 2021, 80(5):7063-7075. 10.1007/s11042-020-09958-4 |
[1] | Yuanjiong LIU, Maozheng HE, Yibin HUANG, Cheng QIAN. Ship identification model based on ResNet50 and improved attention mechanism [J]. Journal of Computer Applications, 2024, 44(6): 1935-1941. |
[2] | Lin GUO, Kunhu LIU, Chenyang MA, Youxue LAI, Yingfen XU. Image super-resolution reconstruction based on residual attention network with receptive field expansion [J]. Journal of Computer Applications, 2024, 44(5): 1579-1587. |
[3] | Boyue WANG, Yingxiang LI, Jiandan ZHONG. Segmentation network for day and night ground-based cloud images based on improved Res-UNet [J]. Journal of Computer Applications, 2024, 44(4): 1310-1316. |
[4] | Shunwang FU, Qian CHEN, Zhi LI, Guomei WANG, Yu LU. Two-channel progressive feature filtering network for tampered image detection and localization [J]. Journal of Computer Applications, 2024, 44(4): 1303-1309. |
[5] | Jingxian ZHOU, Xina LI. UAV detection and recognition based on improved convolutional neural network and radio frequency fingerprint [J]. Journal of Computer Applications, 2024, 44(3): 876-882. |
[6] | Xueyu HUANG, Huaiyu HE, Huimin LIN, Jinshui CHEN. Classification and recognition method of copper alloy metallograph based on feature aggregation [J]. Journal of Computer Applications, 2023, 43(8): 2593-2601. |
[7] | Zhangjian JI, Ming ZHANG, Zilong WANG. High-precision object detection algorithm based on improved VarifocalNet [J]. Journal of Computer Applications, 2023, 43(7): 2147-2154. |
[8] | Yuanyuan QIN, Hong ZHANG. Pulmonary nodule detection algorithm based on attention feature pyramid networks [J]. Journal of Computer Applications, 2023, 43(7): 2311-2318. |
[9] | Huibin ZHANG, Liping FENG, Yaojun HAO, Yining WANG. Ancient mural dynasty identification based on attention mechanism and transfer learning [J]. Journal of Computer Applications, 2023, 43(6): 1826-1832. |
[10] | Wanli SHEN, Yujin ZHANG, Wan HU. U-shaped feature pyramid network for image inpainting forensics [J]. Journal of Computer Applications, 2023, 43(2): 545-551. |
[11] | Qihong SONG, Jianxun LIU, Haize HU, Xiangping ZHANG. Code search model based on collaborative fusion network [J]. Journal of Computer Applications, 2023, 43(12): 3896-3902. |
[12] | Zhiang ZHANG, Guangzhong LIAO. Multi-scale feature enhanced retinal vessel segmentation algorithm based on U-Net [J]. Journal of Computer Applications, 2023, 43(10): 3275-3281. |
[13] | GUO Zihao, DONG Lele, QU Zhijian. Arthropod object detection method based on improved Faster RCNN [J]. Journal of Computer Applications, 2023, 43(1): 88-97. |
[14] | Liefa LIAO, Zhiming LI, Saisai ZHANG. Image retrieval method based on deep residual network and iterative quantization hashing [J]. Journal of Computer Applications, 2022, 42(9): 2845-2852. |
[15] | Huaiqing HE, Jianqing YAN, Kanghua HUI. Lightweight face recognition method based on deep residual network [J]. Journal of Computer Applications, 2022, 42(7): 2030-2036. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||