Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (11): 3228-3233.DOI: 10.11772/j.issn.1001-9081.2021010073
• Artificial intelligence • Previous Articles Next Articles
Yue ZHANG1, Liang ZHANG1,2(), Fei XIE1,2, Jiale YANG1, Rui ZHANG1, Yijian LIU1,2
Received:
2021-01-14
Revised:
2021-03-25
Accepted:
2021-04-06
Online:
2021-04-26
Published:
2021-11-10
Contact:
Liang ZHANG
About author:
ZHANG Yue, born in 1995, M. S. candidate. Her research interests include deep learning, computer vision, target detection, instance segmentation章悦1, 张亮1,2(), 谢非1,2, 杨嘉乐1, 张瑞1, 刘益剑1,2
通讯作者:
张亮
作者简介:
章悦(1995—),女,江苏南京人,硕士研究生,CCF 会员,主要研究方向:深度学习、计算机视觉、目标检测、实例分割CLC Number:
Yue ZHANG, Liang ZHANG, Fei XIE, Jiale YANG, Rui ZHANG, Yijian LIU. Road abandoned object detection algorithm based on optimized instance segmentation model[J]. Journal of Computer Applications, 2021, 41(11): 3228-3233.
章悦, 张亮, 谢非, 杨嘉乐, 张瑞, 刘益剑. 基于实例分割模型优化的道路抛洒物检测算法[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3228-3233.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021010073
算法 | AP | AP50 | AP75 | APs | APm | APl |
---|---|---|---|---|---|---|
CenterMask | 54.30 | 89.50 | 65.60 | 47.20 | 66.80 | 59.30 |
CenterMask+DIoU | 59.40 | 89.20 | 67.50 | 53.30 | 74.80 | 53.50 |
CenterMask+ Dilated CNN | 60.40 | 91.30 | 71.00 | 49.80 | 73.90 | 66.60 |
本文算法 | 61.70 | 89.40 | 71.50 | 50.40 | 76.50 | 71.50 |
Tab. 1 Result comparison of optimization algorithms for road abandoned object detection
算法 | AP | AP50 | AP75 | APs | APm | APl |
---|---|---|---|---|---|---|
CenterMask | 54.30 | 89.50 | 65.60 | 47.20 | 66.80 | 59.30 |
CenterMask+DIoU | 59.40 | 89.20 | 67.50 | 53.30 | 74.80 | 53.50 |
CenterMask+ Dilated CNN | 60.40 | 91.30 | 71.00 | 49.80 | 73.90 | 66.60 |
本文算法 | 61.70 | 89.40 | 71.50 | 50.40 | 76.50 | 71.50 |
算法 | AP/% | 单张图像 平均耗时/s | 检测率/% | |
---|---|---|---|---|
边界框检测 | 掩膜分割 | |||
CenterMask | 54.30 | 52.40 | 0.28 | 93.39 |
Mask R-CNN | 53.60 | 50.30 | 0.35 | 93.14 |
YOLACT | 42.80 | 41.60 | 0.11 | 92.56 |
本文算法 | 61.70 | 54.10 | 0.29 | 94.82 |
Tab. 2 Comparison of test performance of different algorithms
算法 | AP/% | 单张图像 平均耗时/s | 检测率/% | |
---|---|---|---|---|
边界框检测 | 掩膜分割 | |||
CenterMask | 54.30 | 52.40 | 0.28 | 93.39 |
Mask R-CNN | 53.60 | 50.30 | 0.35 | 93.14 |
YOLACT | 42.80 | 41.60 | 0.11 | 92.56 |
本文算法 | 61.70 | 54.10 | 0.29 | 94.82 |
1 | KHATOONABADI S H, BAJIC I V. Video object tracking in the compressed domain using spatio-temporal Markov random field [J]. IEEE Transactions on Image Processing, 2013, 22(1): 300-313. 10.1109/tip.2012.2214049 |
2 | ASVADI A, PEIXOTO P, NUNES U. Detection and tracking of moving objects using 2.5D motion grid [C]// Proceedings of the IEEE 18th International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2015: 788-793. 10.1109/itsc.2015.133 |
3 | 汪贵平,马力旺,郭璐,等.高速公路抛洒物事件图像检测算法[J].长安大学学报(自然科学版),2017,37(5):81-88. 10.18057/icass2018.p.123 |
WANG G P, MA L W, GUO L, et al. Image detection algorithm for incident of discarded things in highway [J]. Journal of Chang’an University (Natural Science Edition), 2017, 37(5): 81-88. 10.18057/icass2018.p.123 | |
4 | 李清瑶,邹皓,赵群,等.基于帧间差分自适应法的车辆抛洒物检测[J].长春理工大学学报(自然科学版),2018,41(4):108-113. |
LI Q Y, ZOU H, ZHAO Q, et al. Vehicles throwing detection based on inter-frame difference adaptive method [J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2018, 41(4): 108-113. | |
5 | 金瑶,张锐,尹东.城市道路视频中小像素目标检测[J].光电工程,2019,46(9):74-81. 10.32657/10356/144136 |
JIN Y, ZHANG R, YIN D. Object detection for small pixel in urban roads videos [J]. Opto-Electronic Engineering, 2019, 46(9): 74-81. 10.32657/10356/144136 | |
6 | 程文冬,马勇,魏庆媛.驾驶人手机通话行为中基于图像特征决策融合的手势识别方法[J].交通运输工程学报,2019,19(4):171-181. 10.3969/j.issn.1671-1637.2019.04.016 |
CHENG W D, MA Y, WEI Q Y. Hand gesture recognition method in driver’s phone-call behavior based on decision fusion of image features [J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 171-181. 10.3969/j.issn.1671-1637.2019.04.016 | |
7 | 陆德彪,郭子明,蔡伯根,等.基于深度数据的车辆目标检测与跟踪方法[J].交通运输系统工程与信息,2018,18(3):55-62. 10.16097/j.cnki.1009-6744.2018.03.009 |
LU D B, GUO Z M, CAI B G, et al. A vehicle detection and tracking method based on range data [J]. Journal of Transportation System Engineering and Information Technology, 2018, 18(3): 55-62. 10.16097/j.cnki.1009-6744.2018.03.009 | |
8 | 孙首群,刘康亚,刘硕妍,等.铁路客运站复杂环境中的运动目标检测[J].交通运输工程学报,2013,13(3):113-120. 10.3969/j.issn.1671-1637.2013.03.016 |
SUN S Q, LIU K Y, LIU S Y, et al. Moving target detection in complex environment of railway station [J]. Journal of Traffic and Transportation Engineering, 2013, 13(3): 113-120. 10.3969/j.issn.1671-1637.2013.03.016 | |
9 | 周雨阳,龚艺,姚琳,等.无人机广域视频的机动车交通参数计算及分析[J].交通运输系统工程与信息,2015,15(6):67-73. 10.3969/j.issn.1009-6744.2015.06.011 |
ZHOU Y Y, GONG Y, YAO L, et al. Calculation and analysis of the traffic parameters of vehicles based on the wide-area drone video [J]. Journal of Transportation System Engineering and Information Technology, 2015, 15(6): 67-73. 10.3969/j.issn.1009-6744.2015.06.011 | |
10 | 郑文博,王坤峰,王飞跃.基于贝叶斯生成对抗网络的背景消减算法[J].自动化学报,2018,44(5):878-890. |
ZHENG W B, WANG K F, WANG F Y. Background subtraction algorithm with Bayesian generative adversarial networks [J]. Acta Automatica Sinica, 2018, 44(5): 878-890. | |
11 | 卢胜男,李小和.结合双向光流约束的特征点匹配车辆跟踪方法[J].交通运输系统工程与信息,2017,17(4):76-82. 10.16097/j.cnki.1009-6744.2017.04.012 |
LU S N, LI X H. Vehicle tracking method using feature point matching combined with bidirectional optical flow [J]. Journal of Transportation System Engineering and Information Technology, 2017, 17(4): 76-82. 10.16097/j.cnki.1009-6744.2017.04.012 | |
12 | 蔡彪,沈宽,付金磊,等.基于Mask R-CNN的铸件X射线DR图像缺陷检测研究[J].仪器仪表学报,2020,41(3):61-69. |
CAI B, SHEN K, FU J L, et al. Research on defect detection of X-ray DR images of casting based on Mask R-CNN [J]. Chinese Journal of Scientific Instrument, 2020, 41(3): 61-69. | |
13 | TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9626-9635. 10.1109/iccv.2019.00972 |
14 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
15 | YAMASHITA T, FURUKAWA H, FUJIYOSHI H. Multiple skip connections of dilated convolution network for semantic segmentation [C]// Proceedings of the 2018 25th IEEE International Conference on Image Processing. Piscataway: IEEE, 2018: 1593-1597. 10.1109/icip.2018.8451033 |
16 | ZHU X Z, CHENG D Z, ZHANG Z, et al. An empirical study of spatial attention mechanisms in deep networks [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6687-6696. 10.1109/iccv.2019.00679 |
17 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. 10.1109/tpami.2016.2577031 |
18 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. 10.1109/cvpr.2016.91 |
19 | MASCI J, GIUSTI A, CIRESAN D, et al. A fast learning algorithm for image segmentation with max-pooling convolutional networks [C]// Proceedings of the 2013 IEEE International Conference on Image Processing. Piscataway: IEEE, 2013: 2713-2717. 10.1109/icip.2013.6738559 |
20 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. 10.1109/cvpr.2017.106 |
21 | LIU Z C, WANG S. Broken corn detection based on an adjusted YOLO with focal loss [J]. IEEE Access, 2019, 7: 68281-68289. 10.1109/access.2019.2916842 |
22 | 丁松涛,曲仕茹.基于深度学习的交通目标感兴趣区域检测[J].中国公路学报,2018,31(9):167-174. 10.3969/j.issn.1001-7372.2018.09.019 |
DING S T, QU S R. Traffic object detection based on deep learning with region of interest selection [J]. China Journal of Highway and Transport, 2018, 31(9): 167-174. 10.3969/j.issn.1001-7372.2018.09.019 |
[1] | CHEN Chengrui, SUN Ning, HE Shibiao, LIAO Yong. Deep learning-based joint channel estimation and equalization algorithm for C-V2X communications [J]. Journal of Computer Applications, 2021, 41(9): 2687-2693. |
[2] | XIE Defeng, JI Jianmin. Syntax-enhanced semantic parsing with syntax-aware representation [J]. Journal of Computer Applications, 2021, 41(9): 2489-2495. |
[3] | DAI Yurou, YANG Qing, ZHANG Fengli, ZHOU Fan. Trajectory prediction model of social network users based on self-supervised learning [J]. Journal of Computer Applications, 2021, 41(9): 2545-2551. |
[4] | MA Jialiang, CHEN Bin, SUN Xiaofei. General object detection framework based on improved Faster R-CNN [J]. Journal of Computer Applications, 2021, 41(9): 2712-2719. |
[5] | ZHAO Hong, KONG Dongyi. Chinese description of image content based on fusion of image feature attention and adaptive attention [J]. Journal of Computer Applications, 2021, 41(9): 2496-2503. |
[6] | XU Jianglang, LI Linyan, WAN Xinjun, HU Fuyuan. Indoor scene recognition method combined with object detection [J]. Journal of Computer Applications, 2021, 41(9): 2720-2725. |
[7] | ZHENG Zhiqiang, HU Xin, WENG Zhi, WANG Yuhe, CHENG Xi. Cattle eye image feature extraction method based on improved DenseNet [J]. Journal of Computer Applications, 2021, 41(9): 2780-2784. |
[8] | HE Zhenghai, XIAN Yantuan, WANG Meng, YU Zhengtao. Case reading comprehension method combining syntactic guidance and character attention mechanism [J]. Journal of Computer Applications, 2021, 41(8): 2427-2431. |
[9] | FAN Wei, LI Chenxuan, XING Yan, HUANG Rui, PENG Hongjian. Binary classification to multiple classification progressive detection network for aero-engine damage images [J]. Journal of Computer Applications, 2021, 41(8): 2352-2357. |
[10] | CAO Yuhong, XU Hai, LIU Sun'ao, WANG Zixiao, LI Hongliang. Review of deep learning-based medical image segmentation [J]. Journal of Computer Applications, 2021, 41(8): 2273-2287. |
[11] | QIN Binbin, PENG Liangkang, LU Xiangming, QIAN Jiangbo. Research progress on driver distracted driving detection [J]. Journal of Computer Applications, 2021, 41(8): 2330-2337. |
[12] | WANG Yue, JIANG Yiming, LAN Julong. Intrusion detection based on improved triplet network and K-nearest neighbor algorithm [J]. Journal of Computer Applications, 2021, 41(7): 1996-2002. |
[13] | GAO Qinquan, HUANG Bingcheng, LIU Wenzhe, TONG Tong. Bamboo strip surface defect detection method based on improved CenterNet [J]. Journal of Computer Applications, 2021, 41(7): 1933-1938. |
[14] | FENG Xingjie, ZHANG Tianze. Panoptic segmentation algorithm based on grouped convolution for feature fusion [J]. Journal of Computer Applications, 2021, 41(7): 2054-2061. |
[15] | LI Yafang, LIANG Ye, FENG Weiwei, ZU Baokai, KANG Yujian. Deep network embedding method based on community optimization [J]. Journal of Computer Applications, 2021, 41(7): 1956-1963. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||