Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (6): 1930-1937.DOI: 10.11772/j.issn.1001-9081.2022050674
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                    Yuanlong ZHAO1, Yugang SHAN2( ), Jie YUAN1, Kangdi ZHAO1
), Jie YUAN1, Kangdi ZHAO1
												  
						
						
						
					
				
Received:2022-05-11
															
							
																	Revised:2023-02-15
															
							
																	Accepted:2023-02-15
															
							
							
																	Online:2023-06-08
															
							
																	Published:2023-06-10
															
							
						Contact:
								Yugang SHAN   
													About author:ZHAO Yuanlong, born in 1994, M. S. candidate. His research interests include object tracking, object detection.Supported by:通讯作者:
					单玉刚
							作者简介:赵元龙(1994—),男,湖北襄阳人,硕士研究生,主要研究方向:目标跟踪、目标检测基金资助:CLC Number:
Yuanlong ZHAO, Yugang SHAN, Jie YUAN, Kangdi ZHAO. Object tracking based on instance segmentation and Pythagorean fuzzy decision-making[J]. Journal of Computer Applications, 2023, 43(6): 1930-1937.
赵元龙, 单玉刚, 袁杰, 赵康迪. 基于实例分割与毕达哥拉斯模糊决策的目标跟踪[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1930-1937.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022050674
| 算法 | OL | M | DAVIS 2016 | DAVIS 2017 | 运行速度/ (frame·s-1) | ||||
|---|---|---|---|---|---|---|---|---|---|
| J&F | J | F | J&F | J | F | ||||
| OnAVOS | √ | √ | 0.855 0 | 0.861 | 0.849 | 0.678 5 | 0.645 | 0.712 | 0.08 | 
| OSVOS | √ | √ | 0.802 0 | 0.798 | 0.806 | 0.602 5 | 0.566 | 0.639 | 0.10 | 
| OSVOSS | √ | √ | — | — | — | 0.680 0 | 0.647 | 0.713 | 0.22 | 
| MSK | √ | √ | 0.775 5 | 0.797 | 0.754 | — | — | — | 0.10 | 
| FAVOS | × | √ | 0.809 5 | 0.824 | 0.795 | 0.582 0 | 0.546 | 0.618 | 0.80 | 
| RGMP | × | √ | 0.817 5 | 0.815 | 0.820 | 0.667 0 | 0.648 | 0.689 | 8.00 | 
| OSMN | × | √ | 0.734 5 | 0.740 | 0.729 | 0.548 0 | 0.525 | 0.571 | 8.00 | 
| SiamMask | × | × | 0.697 5 | 0.717 | 0.678 | 0.564 0 | 0.543 | 0.585 | 55.00 | 
| 本文算法 | × | × | 0.836 5 | 0.840 | 0.833 | 0.690 5 | 0.696 | 0.685 | 32.00 | 
Tab. 1 Experimental results of different algorithms on DAVIS 2016 and DAVIS 2017 datasets
| 算法 | OL | M | DAVIS 2016 | DAVIS 2017 | 运行速度/ (frame·s-1) | ||||
|---|---|---|---|---|---|---|---|---|---|
| J&F | J | F | J&F | J | F | ||||
| OnAVOS | √ | √ | 0.855 0 | 0.861 | 0.849 | 0.678 5 | 0.645 | 0.712 | 0.08 | 
| OSVOS | √ | √ | 0.802 0 | 0.798 | 0.806 | 0.602 5 | 0.566 | 0.639 | 0.10 | 
| OSVOSS | √ | √ | — | — | — | 0.680 0 | 0.647 | 0.713 | 0.22 | 
| MSK | √ | √ | 0.775 5 | 0.797 | 0.754 | — | — | — | 0.10 | 
| FAVOS | × | √ | 0.809 5 | 0.824 | 0.795 | 0.582 0 | 0.546 | 0.618 | 0.80 | 
| RGMP | × | √ | 0.817 5 | 0.815 | 0.820 | 0.667 0 | 0.648 | 0.689 | 8.00 | 
| OSMN | × | √ | 0.734 5 | 0.740 | 0.729 | 0.548 0 | 0.525 | 0.571 | 8.00 | 
| SiamMask | × | × | 0.697 5 | 0.717 | 0.678 | 0.564 0 | 0.543 | 0.585 | 55.00 | 
| 本文算法 | × | × | 0.836 5 | 0.840 | 0.833 | 0.690 5 | 0.696 | 0.685 | 32.00 | 
| 数据集 | 算法 | A | R | EAO | 
|---|---|---|---|---|
| VOT2016 | SiamMask | 0.640 | 0.214 | 0.433 | 
| ATOM | 0.610 | 0.180 | 0.430 | |
| ECO | 0.550 | 0.200 | 0.375 | |
| ASRCF | 0.560 | 0.187 | 0.391 | |
| C-COT | 0.540 | 0.238 | 0.331 | |
| TCNN | 0.550 | 0.268 | 0.325 | |
| SiamRPN | 0.560 | 0.302 | 0.344 | |
| DaSiamRPN | 0.610 | 0.220 | 0.411 | |
| SiamRPN++ | 0.640 | 0.200 | 0.464 | |
| 本文算法 | 0.620 | 0.142 | 0.475 | |
| VOT2018 | SiamMask | 0.610 | 0.276 | 0.380 | 
| ATOM | 0.590 | 0.204 | 0.401 | |
| ECO | 0.484 | 0.276 | 0.280 | |
| LADCF | 0.510 | 0.159 | 0.389 | |
| SPM | 0.580 | 0.300 | 0.338 | |
| RCO | 0.507 | 0.155 | 0.376 | |
| UPDT | 0.536 | 0.184 | 0.379 | |
| MFT | 0.505 | 0.140 | 0.386 | |
| GFS-DCF | 0.510 | 0.140 | 0.397 | |
| 本文算法 | 0.586 | 0.183 | 0.421 | 
Tab. 2 Comparison of experimental results on different datasets
| 数据集 | 算法 | A | R | EAO | 
|---|---|---|---|---|
| VOT2016 | SiamMask | 0.640 | 0.214 | 0.433 | 
| ATOM | 0.610 | 0.180 | 0.430 | |
| ECO | 0.550 | 0.200 | 0.375 | |
| ASRCF | 0.560 | 0.187 | 0.391 | |
| C-COT | 0.540 | 0.238 | 0.331 | |
| TCNN | 0.550 | 0.268 | 0.325 | |
| SiamRPN | 0.560 | 0.302 | 0.344 | |
| DaSiamRPN | 0.610 | 0.220 | 0.411 | |
| SiamRPN++ | 0.640 | 0.200 | 0.464 | |
| 本文算法 | 0.620 | 0.142 | 0.475 | |
| VOT2018 | SiamMask | 0.610 | 0.276 | 0.380 | 
| ATOM | 0.590 | 0.204 | 0.401 | |
| ECO | 0.484 | 0.276 | 0.280 | |
| LADCF | 0.510 | 0.159 | 0.389 | |
| SPM | 0.580 | 0.300 | 0.338 | |
| RCO | 0.507 | 0.155 | 0.376 | |
| UPDT | 0.536 | 0.184 | 0.379 | |
| MFT | 0.505 | 0.140 | 0.386 | |
| GFS-DCF | 0.510 | 0.140 | 0.397 | |
| 本文算法 | 0.586 | 0.183 | 0.421 | 
| 模型 | MaskIoU | Appearance | KF | DFPN1 | DFPN2 | EAO | J | 跟踪速度/ (frame·s-1) | 
|---|---|---|---|---|---|---|---|---|
| MaskIoU_based | √ | 0.334 | 0.613 | 48 | ||||
| Appearance_based | √ | 0.386 | 0.667 | 19 | ||||
| MaskIoU+Appearance+DFPN1 | √ | √ | √ | 0.403 | 0.696 | 32 | ||
| 本文模型 | √ | √ | √ | √ | √ | 0.421 | 0.696 | 32 | 
Tab. 3 Comparative results of ablation experiments
| 模型 | MaskIoU | Appearance | KF | DFPN1 | DFPN2 | EAO | J | 跟踪速度/ (frame·s-1) | 
|---|---|---|---|---|---|---|---|---|
| MaskIoU_based | √ | 0.334 | 0.613 | 48 | ||||
| Appearance_based | √ | 0.386 | 0.667 | 19 | ||||
| MaskIoU+Appearance+DFPN1 | √ | √ | √ | 0.403 | 0.696 | 32 | ||
| 本文模型 | √ | √ | √ | √ | √ | 0.421 | 0.696 | 32 | 
| 1 | 李玺,查宇飞,张天柱,等. 深度学习的目标跟踪算法综述[J]. 中国图象图形学报, 2019, 24(12): 2057-2080. 10.11834/jig.190372 | 
| LI X, ZHA Y F, ZHANG T Z, et al. Survey of visual object tracking algorithms based on deep learning [J]. Journal of Image and Graphics, 2019, 24(12): 2057-2080. 10.11834/jig.190372 | |
| 2 | DANELLJAN M, HAGER G, KHAN F S, et al. Convolutional features for correlation filter based visual tracking [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision Workshops. Piscataway: IEEE, 2015:621-629. 10.1109/iccvw.2015.84 | 
| 3 | BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9914. Cham: Springer, 2016:850-865. | 
| 4 | DANELLJAN M, ROBINSON A, KHAN F S, et al. Beyond correlation filters: learning continuous convolution operators for visual tracking [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9909. Cham: Springer, 2016:472-488. | 
| 5 | DANELLJAN M, BHAT G, KHAN F S, et al. ECO: efficient convolution operators for tracking[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:6931-6939. 10.1109/cvpr.2017.733 | 
| 6 | NAM H, BAEK M, HAN B. Modeling and propagating CNNs in a tree structure for visual tracking [EB/OL]. (2016-08-25) [2022-03-10].. | 
| 7 | LI B, YAN J J, WU W, et al. High performance visual tracking with Siamese region proposal network [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8971-8980. 10.1109/cvpr.2018.00935 | 
| 8 | WANG Q, ZHANG L, BERTINETTO L, et al. Fast online object tracking and segmentation: a unifying approach [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:1328-1338. 10.1109/cvpr.2019.00142 | 
| 9 | PENG X D, MA X L. Pythagorean fuzzy multi-criteria decision making method based on CODAS with new score function[J]. Journal of Intelligent and Fuzzy Systems, 2020, 38(3):3307-3318. 10.3233/jifs-190043 | 
| 10 | BOLYA D, ZHOU C, XIAO F, et al. YOLACT++: better real-time instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(2):1108-1121. 10.1109/tpami.2020.3014297 | 
| 11 | RGEY Z, NIKOS K. Learning to compare image patches via convolutional neural networks [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 4353-4361. 10.1109/cvpr.2015.7299064 | 
| 12 | PERAZZI F, PONT-TUSET J, McWILLIAMS B, et al. A benchmark dataset and evaluation methodology for video object segmentation [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:724-732. 10.1109/cvpr.2016.85 | 
| 13 | PONT-TUSET J, PERAZZI F, CAELLES S, et al. The 2017 DAVIS challenge on video object segmentation [EB/OL]. (2018-03-01) [2022-03-10].. 10.1109/cvpr.2017.565 | 
| 14 | VOIGTLAENDER P, LEIBE B. Online adaptation of convolutional neural networks for video object segmentation [C]// Proceedings of the 2017 British Machine Vision Conference. Durham: BMVA Press, 2017: No.116. 10.5244/c.31.116 | 
| 15 | CAELLES S, MANINIS K K, PONT-TUSET J, et al. One-shot video object segmentation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:5320-5329. 10.1109/cvpr.2017.565 | 
| 16 | MANINIS K K, CAELLES S, CHEN Y, et al. Video object segmentation without temporal information [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(6): 1515-1530. 10.1109/tpami.2018.2838670 | 
| 17 | PERAZZI F, KHOREVA A, BENENSON R, et al. Learning video object segmentation from static images [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 3491-3500. 10.1109/cvpr.2017.372 | 
| 18 | CHENG J C, TSAI Y H, HUNG W C, et al. Fast and accurate online video object segmentation via tracking parts[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:7415-7424. 10.1109/cvpr.2018.00774 | 
| 19 | OH S W, LEE J Y, SUNKAVALLI K, et al. Fast video object segmentation by reference-guided mask propagation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7376-7385. 10.1109/cvpr.2018.00770 | 
| 20 | YANG L J, WANG Y R, XIONG X H, et al. Efficient video object segmentation via network modulation [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:6499-6507. 10.1109/cvpr.2018.00680 | 
| 21 | KRISTAN M, LEONARDIS A, MATAS J, et al. The visual object tracking VOT2016 challenge results [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9914. Cham: Springer, 2016:777-823. | 
| 22 | KRISTAN M, LEONARDIS A, MATAS J, et al. The sixth visual object tracking VOT2018 challenge results [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11129. Cham: Springer, 2019: 3-53. | 
| 23 | DANELLJAN M, BHAT G, KHAN F S, et al. ATOM: accurate tracking by overlap maximization[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:4660-4669. 10.1109/cvpr.2019.00479 | 
| 24 | DAI K, WANG D, LU H, et al. Visual tracking via adaptive spatially-regularized correlation filters[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:4670-4679. 10.1109/cvpr.2019.00480 | 
| 25 | ZHU Z, WANG Q, LI B, et al. Distractor-aware Siamese networks for visual object tracking [C]// Proceedings of the 2018 International Conference on European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2018: 101-117. 10.1007/978-3-030-01240-3_7 | 
| 26 | LI B, WU W, WANG Q, et al. SiamRPN++: evolution of siamese visual tracking with very deep networks [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020:4282-4291. 10.1109/cvpr.2019.00441 | 
| 27 | XU T, FENG Z H, WU X J, et al. Learning adaptive discriminative correlation filters via temporal consistency preserving spatial feature selection for robust visual object tracking[J]. IEEE Transactions on Image Processing, 2019, 28(11):5596-5609. 10.1109/tip.2019.2919201 | 
| 28 | WANG G T, LUO C, XIONG Z W. Spmtracker: series-parallel matching for real-time visual object tracking [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3643-3652. 10.1109/cvpr.2019.00376 | 
| 29 | BHAT G, JOHNANDER J, DANELLJAN M, et al. Unveiling the power of deep tracking [C]// Proceedings of the 2018 European Conference on Computer Vision. Berlin, Heidelberg: Springer-Verlag, 2018:483-498. 10.1007/978-3-030-01216-8_30 | 
| 30 | BAI S, HE Z, XU T-B, et al. Multi-hierarchical independent correlation filters for visual tracking[EB/OL]. (2018-11-26) [2022-03-11]. . 10.1109/icme46284.2020.9102759 | 
| 31 | XU T, FENG Z H, WU X J, et al. Joint group feature selection and discriminative filter learning for robust visual object tracking[C]// Proceedings of the 2019 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2019: 7950-796. 10.1109/iccv.2019.00804 | 
| [1] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. | 
| [2] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. | 
| [3] | Yuanjiong LIU, Maozheng HE, Yibin HUANG, Cheng QIAN. Ship identification model based on ResNet50 and improved attention mechanism [J]. Journal of Computer Applications, 2024, 44(6): 1935-1941. | 
| [4] | Ziwen SUN, Lizhi QIAN, Chuandong YANG, Yibo GAO, Qingyang LU, Guanglin YUAN. Survey of visual object tracking methods based on Transformer [J]. Journal of Computer Applications, 2024, 44(5): 1644-1654. | 
| [5] | Zhiwen JING, Yujia ZHANG, Boting SUN, Hao GUO. Two-stage recommendation algorithm of Siamese graph convolutional neural network [J]. Journal of Computer Applications, 2024, 44(2): 469-476. | 
| [6] | Chenhui CUI, Suzhen LIN, Dawei LI, Xiaofei LU, Jie WU. Infrared dim small target tracking method based on Siamese network and Transformer [J]. Journal of Computer Applications, 2024, 44(2): 563-571. | 
| [7] | Cunyi LIAO, Yi ZHENG, Weijin LIU, Huan YU, Shouyin LIU. Decoupling-fusing algorithm for multiple tasks with autonomous driving environment perception [J]. Journal of Computer Applications, 2024, 44(2): 424-431. | 
| [8] | Li ZENG, Jingru YANG, Gang HUANG, Xiang JING, Chaoran LUO. Survey on hypergraph application methods: issues, advances, and challenges [J]. Journal of Computer Applications, 2024, 44(11): 3315-3326. | 
| [9] | Rui HUANG, Chaoqun ZHANG, Xuyi CHENG, Yan XING, Bao ZHANG. Incomplete instance guided aeroengine blade instance segmentation [J]. Journal of Computer Applications, 2024, 44(1): 167-174. | 
| [10] | Junyu YANG, Yan DONG, Zhennan LONG, Xin YANG, Bin HAN. Rain detection algorithm based on event camera [J]. Journal of Computer Applications, 2023, 43(9): 2904-2909. | 
| [11] | Kunting LU, Rongrong FEI, Xuande ZHANG. Remote sensing image pansharpening by convolutional neural network [J]. Journal of Computer Applications, 2023, 43(9): 2963-2969. | 
| [12] | Junjian JIANG, Dawei LIU, Yifan LIU, Yougui REN, Zhibin ZHAO. Few-shot object detection algorithm based on Siamese network [J]. Journal of Computer Applications, 2023, 43(8): 2325-2329. | 
| [13] | Li WANG, Shibin XUAN, Xuyang QIN, Ziwei LI. Multi-object tracking method based on dual-decoder Transformer [J]. Journal of Computer Applications, 2023, 43(6): 1919-1929. | 
| [14] | Guangyao ZHANG, Chunfeng SONG. Pedestrian head tracking model based on full-body appearance features [J]. Journal of Computer Applications, 2023, 43(5): 1372-1377. | 
| [15] | Yue CHI, Zhengping LI, Chao XU, Bo FENG. Highlight removal algorithm for medical endoscopic images [J]. Journal of Computer Applications, 2023, 43(4): 1278-1283. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||