Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (10): 3275-3280.DOI: 10.11772/j.issn.1001-9081.2023101479
• The 40th CCF National Database Conference (NDBC 2023) • Previous Articles Next Articles
Yanbo LI, Qing HE(), Shunyi LU
Received:
2023-10-30
Revised:
2024-01-08
Accepted:
2024-01-12
Online:
2024-10-15
Published:
2024-10-10
Contact:
Qing HE
About author:
LI Yanbo, born in 1998, M. S. candidate. His research interests include aspect level sentiment analysis, aspect sentiment triplet extraction, data mining.Supported by:
通讯作者:
何庆
作者简介:
李言博(1998—),男,贵州毕节人,硕士研究生,CCF会员,主要研究方向:方面级情感分析、方面情感三元组抽取、数据挖掘基金资助:
CLC Number:
Yanbo LI, Qing HE, Shunyi LU. Aspect sentiment triplet extraction integrating semantic and syntactic information[J]. Journal of Computer Applications, 2024, 44(10): 3275-3280.
李言博, 何庆, 陆顺意. 融合语义和句法信息的方面情感三元组抽取[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3275-3280.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023101479
数据集 | 句子数 | 三元组数 | |
---|---|---|---|
14res | 训练集 | 1 259 | 2 356 |
验证集 | 315 | 580 | |
测试集 | 493 | 1 008 | |
14lap | 训练集 | 899 | 1 452 |
验证集 | 225 | 383 | |
测试集 | 332 | 547 | |
15res | 训练集 | 603 | 1 038 |
验证集 | 151 | 239 | |
测试集 | 325 | 493 | |
16res | 训练集 | 863 | 1 421 |
验证集 | 216 | 348 | |
测试集 | 328 | 525 |
Tab. 1 Statistics of datasets
数据集 | 句子数 | 三元组数 | |
---|---|---|---|
14res | 训练集 | 1 259 | 2 356 |
验证集 | 315 | 580 | |
测试集 | 493 | 1 008 | |
14lap | 训练集 | 899 | 1 452 |
验证集 | 225 | 383 | |
测试集 | 332 | 547 | |
15res | 训练集 | 603 | 1 038 |
验证集 | 151 | 239 | |
测试集 | 325 | 493 | |
16res | 训练集 | 863 | 1 421 |
验证集 | 216 | 348 | |
测试集 | 328 | 525 |
模型 | 14res | 14lap | 15res | 16res | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | P | R | F1 | P | R | F1 | |
Li-unified-R | 41.44 | 68.79 | 51.68 | 42.25 | 42.78 | 42.47 | 43.34 | 50.73 | 46.69 | 38.19 | 53.47 | 44.51 |
Peng-unified-R | 44.18 | 62.99 | 51.89 | 40.40 | 47.24 | 43.50 | 40.97 | 54.68 | 46.79 | 46.76 | 62.97 | 53.62 |
Peng-unified-R+IOG | 58.89 | 60.41 | 59.64 | 48.62 | 45.52 | 47.02 | 51.70 | 46.04 | 48.71 | 59.25 | 58.09 | 58.67 |
IMN+IOG | 59.57 | 63.88 | 61.65 | 49.21 | 46.23 | 47.68 | 55.24 | 52.33 | 53.75 | — | — | — |
JETt | 70.20 | 53.02 | 60.41 | 51.48 | 42.65 | 46.65 | 62.14 | 47.25 | 53.68 | 71.12 | 57.20 | 63.41 |
JETo | 67.97 | 60.32 | 63.92 | 58.47 | 43.67 | 50.00 | 58.35 | 51.43 | 54.67 | 64.77 | 61.29 | 62.98 |
S3E2 | 69.08 | 64.55 | 66.74 | 59.43 | 46.23 | 52.01 | 61.06 | 56.44 | 58.66 | 71.08 | 63.13 | 66.87 |
GTS-CNN | 70.79 | 61.71 | 65.94 | 55.93 | 47.52 | 51.38 | 60.09 | 53.57 | 56.64 | 62.23 | 66.98 | 64.73 |
GTS-BiLSTM | 67.28 | 61.91 | 64.49 | 59.42 | 45.13 | 51.30 | 63.26 | 50.71 | 56.29 | 66.07 | 65.05 | 65.56 |
GTS-BERT | 70.92 | 69.49 | 70.20 | 57.52 | 51.92 | 54.58 | 59.29 | 58.07 | 58.67 | 68.58 | 66.60 | 67.58 |
SSED-ASTE | 71.15 | 69.85 | 70.49 | 60.76 | 52.13 | 56.08 | 62.30 | 60.95 | 61.60 | 67.50 | 69.28 | 68.36 |
Tab. 2 Experimental results of different models
模型 | 14res | 14lap | 15res | 16res | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | R | F1 | P | R | F1 | P | R | F1 | P | R | F1 | |
Li-unified-R | 41.44 | 68.79 | 51.68 | 42.25 | 42.78 | 42.47 | 43.34 | 50.73 | 46.69 | 38.19 | 53.47 | 44.51 |
Peng-unified-R | 44.18 | 62.99 | 51.89 | 40.40 | 47.24 | 43.50 | 40.97 | 54.68 | 46.79 | 46.76 | 62.97 | 53.62 |
Peng-unified-R+IOG | 58.89 | 60.41 | 59.64 | 48.62 | 45.52 | 47.02 | 51.70 | 46.04 | 48.71 | 59.25 | 58.09 | 58.67 |
IMN+IOG | 59.57 | 63.88 | 61.65 | 49.21 | 46.23 | 47.68 | 55.24 | 52.33 | 53.75 | — | — | — |
JETt | 70.20 | 53.02 | 60.41 | 51.48 | 42.65 | 46.65 | 62.14 | 47.25 | 53.68 | 71.12 | 57.20 | 63.41 |
JETo | 67.97 | 60.32 | 63.92 | 58.47 | 43.67 | 50.00 | 58.35 | 51.43 | 54.67 | 64.77 | 61.29 | 62.98 |
S3E2 | 69.08 | 64.55 | 66.74 | 59.43 | 46.23 | 52.01 | 61.06 | 56.44 | 58.66 | 71.08 | 63.13 | 66.87 |
GTS-CNN | 70.79 | 61.71 | 65.94 | 55.93 | 47.52 | 51.38 | 60.09 | 53.57 | 56.64 | 62.23 | 66.98 | 64.73 |
GTS-BiLSTM | 67.28 | 61.91 | 64.49 | 59.42 | 45.13 | 51.30 | 63.26 | 50.71 | 56.29 | 66.07 | 65.05 | 65.56 |
GTS-BERT | 70.92 | 69.49 | 70.20 | 57.52 | 51.92 | 54.58 | 59.29 | 58.07 | 58.67 | 68.58 | 66.60 | 67.58 |
SSED-ASTE | 71.15 | 69.85 | 70.49 | 60.76 | 52.13 | 56.08 | 62.30 | 60.95 | 61.60 | 67.50 | 69.28 | 68.36 |
模型 | F1 | |||
---|---|---|---|---|
14res | 14lap | 15res | 16res | |
SSED-ASTE | 70.49 | 56.08 | 61.60 | 68.36 |
-Semantic | 69.62 | 55.15 | 60.32 | 66.60 |
-Syntax | 69.66 | 55.31 | 59.71 | 66.52 |
Tab. 3 Results of ablation experiments
模型 | F1 | |||
---|---|---|---|---|
14res | 14lap | 15res | 16res | |
SSED-ASTE | 70.49 | 56.08 | 61.60 | 68.36 |
-Semantic | 69.62 | 55.15 | 60.32 | 66.60 |
-Syntax | 69.66 | 55.31 | 59.71 | 66.52 |
1 | 赵妍妍,秦兵,刘挺.文本情感分析[J].软件学报,2010,21(8):1834-1848. |
ZHAO Y Y, QIN B, LIU T. Sentiment analysis [J]. Journal of Software, 2010, 21(8): 1834-1848. | |
2 | PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2014 Task 4: aspect based sentiment analysis[C]// Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2014: 27-35. |
3 | YIN Y, WEI F, DONG L, et al. Unsupervised word and dependency path embeddings for aspect term extraction[C]// Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 2979-2985. |
4 | WU Z, ZHAO F, DAI X-Y, et al. Latent opinions transfer network for target-oriented opinion words extraction[C]// Proceedings of the 2020 AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 9298-9305. |
5 | LI X, BING L, LI P, et al. Aspect term extraction with history attention and selective transformation[C]// Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 4194-4200. |
6 | FERNANDO J, KHODRA M L, SEPTIANDRI A A. Aspect and opinion terms extraction using double embeddings and attention mechanism for Indonesian hotel reviews[C]// Proceedings of the 2019 International Conference of Advanced Informatics: Concepts, Theory and Applications. Piscataway: IEEE, 2019: 1-6. |
7 | JEBBARA S, CIMIANO P. Improving opinion-target extraction with character-level word embeddings[C]// Proceedings of the First Workshop on Subword and Character Level Models in NLP. Stroudsburg: ACL, 2017: 159-167. |
8 | KLINGER R, CIMIANO P. Joint and pipeline probabilistic models for fine-grained sentiment analysis: extracting aspects, subjective phrases and their relations[C]// Proceedings of the 2013 IEEE 13th International Conference on Data Mining Workshops. Piscataway: IEEE, 2013: 937-944. |
9 | TANG D, QIN B, LIU T. Aspect level sentiment classification with deep memory network[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2016: 214-224. |
10 | MA D, LI S, ZHANG X. Interactive attention networks for aspect-level sentiment classification[C]// Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 4068-4074. |
11 | LI X, BING L, LAM W, et al. Transformation networks for target-oriented sentiment classification[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2018: 946-956. |
12 | PENG H, XU L, BING L, et al. Knowing what, how and why: a near complete solution for aspect-based sentiment analysis[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 8600-8607. |
13 | XU L, LI H, LU W, et al. Position-aware tagging for aspect sentiment triplet extraction[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 2339-2349. |
14 | WU Z, YING C, ZHAO F, et al. Grid tagging scheme for aspect-oriented fine-grained opinion extraction[C]// Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg: ACL, 2020: 2576-2585. |
15 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computing, 1997, 9(8): 1735-1780. |
16 | VASWANI A, SHAZEER N M, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2017: 6000-6010. |
17 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. (2016-09-09) [2023-10-01]. . |
18 | MUKHERJEE R, NAYAK T, BUTALA Y, et al. PASTE: a tagging-free decoding framework using pointer networks for aspect sentiment triplet extraction[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 9279-9291. |
19 | ZHOU T, SHEN Y, CHEN K, et al. Hierarchical dual graph convolutional network for aspect-based sentiment analysis[J]. Knowledge-Based Systems, 2023, 276: 110740. |
20 | 刘辉,马祥,张琳玉,等.融合匹配长短时记忆网络和语法距离的方面级情感分析模型[J].计算机应用,2023,43(1):45-50. |
LIU H, MA X, ZHANG L Y, et al. Aspect-based sentiment analysis model integrating match-LSTM network and grammatical distance [J]. Journal of Computer Applications, 2023, 43(1): 45-50. | |
21 | LI Y, HE Q, ZHANG D. Dual graph convolutional networks integrating affective knowledge and position information for aspect sentiment triplet extraction[J]. Frontiers in Neurorobotics, 2023, 17: 1193011. |
22 | PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2015 Task 12: aspect based sentiment analysis[C]// Proceedings of the 9th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2015: 486-495. |
23 | PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2016 Task 5: aspect based sentiment analysis[C]// Proceedings of the 10th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2016: 19-30. |
24 | DEVLIN J, CHANG M-W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 4171-4186. |
25 | LOSHCHILOV I, HUTTER F. Fixing weight decay regularization in Adam [EB/OL]. (2017-11-14) [2023-10-01]. . |
26 | LI X, BING L, LI P, et al. A unified model for opinion target extraction and target sentiment prediction[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 6714-6721. |
27 | HE R, LEE W S, NG H T, et al. An interactive multi-task learning network for end-to-end aspect-based sentiment analysis [EB/OL]. (2019-06-17) [2023-10-01]. . |
28 | CHEN Z, HUANG H, LIU B, et al. Semantic and syntactic enhanced aspect sentiment triplet extraction[C]// Finding of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 1474-1483. |
[1] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[4] | Chuanlin PANG, Rui TANG, Ruizhi ZHANG, Chuan LIU, Jia LIU, Shibo YUE. Distributed power allocation algorithm based on graph convolutional network for D2D communication systems [J]. Journal of Computer Applications, 2024, 44(9): 2855-2862. |
[5] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[6] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[7] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. |
[8] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. |
[9] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. |
[10] | Tianci KE, Jianhua LIU, Shuihua SUN, Zhixiong ZHENG, Zijie CAI. Aspect-level sentiment analysis model combining strong association dependency and concise syntax [J]. Journal of Computer Applications, 2024, 44(6): 1786-1795. |
[11] | Longtao GAO, Nana LI. Aspect sentiment triplet extraction based on aspect-aware attention enhancement [J]. Journal of Computer Applications, 2024, 44(4): 1049-1057. |
[12] | Xianfeng YANG, Yilei TANG, Ziqiang LI. Aspect-level sentiment analysis model based on alternating‑attention mechanism and graph convolutional network [J]. Journal of Computer Applications, 2024, 44(4): 1058-1064. |
[13] | Rong HUANG, Junjie SONG, Shubo ZHOU, Hao LIU. Image aesthetic quality evaluation method based on self-supervised vision Transformer [J]. Journal of Computer Applications, 2024, 44(4): 1269-1276. |
[14] | Lei GUO, Zhen JIA, Tianrui LI. Relational and interactive graph attention network for aspect-level sentiment analysis [J]. Journal of Computer Applications, 2024, 44(3): 696-701. |
[15] | Ziqi HUANG, Jianpeng HU. Entity category enhanced nested named entity recognition in automotive domain [J]. Journal of Computer Applications, 2024, 44(2): 377-384. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||