Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (11): 3354-3363.DOI: 10.11772/j.issn.1001-9081.2023111593
• Artificial intelligence • Previous Articles Next Articles
Siqi YANG1,2, Tianjian LUO1,2(), Xuanhui YAN1,2, Guangju YANG1,2
Received:
2023-11-20
Revised:
2024-03-19
Accepted:
2024-03-21
Online:
2024-03-22
Published:
2024-11-10
Contact:
Tianjian LUO
About author:
YANG Siqi, born in 2000, M. S. candidate. Her research interests include brain computer interface, pattern recognition.Supported by:
杨思琪1,2, 罗天健1,2(), 严宣辉1,2, 杨光局1,2
通讯作者:
罗天健
作者简介:
杨思琪(2000—),女,湖南衡阳人,硕士研究生,CCF会员,主要研究方向:脑机接口、模式识别基金资助:
CLC Number:
Siqi YANG, Tianjian LUO, Xuanhui YAN, Guangju YANG. Transfer kernel learning method based on spatial features for motor imagery EEG[J]. Journal of Computer Applications, 2024, 44(11): 3354-3363.
杨思琪, 罗天健, 严宣辉, 杨光局. 运动想象脑电图的空域特征迁移核学习方法[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3354-3363.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023111593
数据集 | 被试者数 | MI任务数 | 采样时间点数 | 通道数 | 样本数 |
---|---|---|---|---|---|
MI2a | 9 | 4 | 750 | 22 | 288 |
MI2b | 9 | 2 | 750 | 3 | 400 |
MI4a | 5 | 2 | 300 | 118 | 280 |
Tab. 1 Statistics for three experimental datasets
数据集 | 被试者数 | MI任务数 | 采样时间点数 | 通道数 | 样本数 |
---|---|---|---|---|---|
MI2a | 9 | 4 | 750 | 22 | 288 |
MI2b | 9 | 2 | 750 | 3 | 400 |
MI4a | 5 | 2 | 300 | 118 | 280 |
算法 | 平均分类准确率 | 均值 | |||||||
---|---|---|---|---|---|---|---|---|---|
MI2a-1 | MI2a-2 | MI2a-3 | MI2a-4 | MI2a-5 | MI2a-6 | MI2b | MI4a | ||
CSP-TJM | 57.18 | 57.64 | 61.81 | 57.87 | 60.88 | 56.79 | 67.00 | 57.36 | 59.57 |
CSP-JDA | 61.37 | 62.35 | 54.58 | 57.41 | 57.53 | 51.25 | 58.28 | 60.80 | 57.95 |
CSP-LDA | 68.90 | 67.90 | 66.90 | 65.05 | 67.67 | 57.79 | 66.73 | 64.00 | 65.62 |
EA-CSP-LDA | 73.69 | 70.99 | 80.25 | 70.99 | 77.16 | 68.52 | 68.34 | 78.29 | 73.53 |
MDM | 59.62 | 59.83 | 55.24 | 56.08 | 53.88 | 52.58 | 58.14 | 60.69 | 57.01 |
RA-MDM | 72.07 | 72.99 | 79.48 | 69.21 | 77.01 | 66.28 | 69.69 | 77.07 | 72.98 |
MEKT | 76.31 | 73.46 | 81.10 | 80.86 | 69.98 | 69.47 | 76.37 | ||
METL | 76.00 | — | — | — | — | — | — | — | — |
SB-TA-CSP | 75.15 | — | — | — | — | — | — | — | — |
TKCSP | — | — | — | — | — | — | — | 81.14 | — |
FWR-JPDA | 75.69 | 80.56 | 74.07 | 78.47 | 70.06 | — | — | — | |
MMDA | 77.93 | — | — | — | — | — | — | 83.00 | — |
EA-CSP-JDA | 76.70 | 70.68 | 79.17 | 69.75 | 76.16 | 66.36 | 69.56 | 78.14 | 73.31 |
TKRTS-R | 75.93 | 76.54 | 82.25 | 75.39 | 79.94 | 71.99 | 85.43 | 77.18 | |
TKRTS-L | 75.77 | 74.77 | 71.30 | 70.03 | 84.29 | ||||
TKRTS-E | 75.31 | 73.77 | 82.10 | 70.91 | 79.17 | 68.03 | 83.64 | 75.53 |
Tab. 2 Comparison of average classification accuracy under MTS strategy
算法 | 平均分类准确率 | 均值 | |||||||
---|---|---|---|---|---|---|---|---|---|
MI2a-1 | MI2a-2 | MI2a-3 | MI2a-4 | MI2a-5 | MI2a-6 | MI2b | MI4a | ||
CSP-TJM | 57.18 | 57.64 | 61.81 | 57.87 | 60.88 | 56.79 | 67.00 | 57.36 | 59.57 |
CSP-JDA | 61.37 | 62.35 | 54.58 | 57.41 | 57.53 | 51.25 | 58.28 | 60.80 | 57.95 |
CSP-LDA | 68.90 | 67.90 | 66.90 | 65.05 | 67.67 | 57.79 | 66.73 | 64.00 | 65.62 |
EA-CSP-LDA | 73.69 | 70.99 | 80.25 | 70.99 | 77.16 | 68.52 | 68.34 | 78.29 | 73.53 |
MDM | 59.62 | 59.83 | 55.24 | 56.08 | 53.88 | 52.58 | 58.14 | 60.69 | 57.01 |
RA-MDM | 72.07 | 72.99 | 79.48 | 69.21 | 77.01 | 66.28 | 69.69 | 77.07 | 72.98 |
MEKT | 76.31 | 73.46 | 81.10 | 80.86 | 69.98 | 69.47 | 76.37 | ||
METL | 76.00 | — | — | — | — | — | — | — | — |
SB-TA-CSP | 75.15 | — | — | — | — | — | — | — | — |
TKCSP | — | — | — | — | — | — | — | 81.14 | — |
FWR-JPDA | 75.69 | 80.56 | 74.07 | 78.47 | 70.06 | — | — | — | |
MMDA | 77.93 | — | — | — | — | — | — | 83.00 | — |
EA-CSP-JDA | 76.70 | 70.68 | 79.17 | 69.75 | 76.16 | 66.36 | 69.56 | 78.14 | 73.31 |
TKRTS-R | 75.93 | 76.54 | 82.25 | 75.39 | 79.94 | 71.99 | 85.43 | 77.18 | |
TKRTS-L | 75.77 | 74.77 | 71.30 | 70.03 | 84.29 | ||||
TKRTS-E | 75.31 | 73.77 | 82.10 | 70.91 | 79.17 | 68.03 | 83.64 | 75.53 |
算法 | 平均分类准确率 | 均值 | |||||||
---|---|---|---|---|---|---|---|---|---|
MI2a-1 | MI2a-2 | MI2a-3 | MI2a-4 | MI2a-5 | MI2a-6 | MI2b | MI4a | ||
CSP-TJM | 55.23 | 55.40 | 56.59 | 55.30 | 54.93 | 51.90 | 59.95 | 57.52 | 55.85 |
CSP-JDA | 58.35 | 56.48 | 58.96 | 54.21 | 56.71 | 53.29 | 58.89 | 60.73 | 57.20 |
CSP-LDA | 59.28 | 55.64 | 59.89 | 57.06 | 58.40 | 54.31 | 60.81 | 55.68 | 57.63 |
EA-CSP-LDA | 64.57 | 61.27 | 70.18 | 59.34 | 64.91 | 58.73 | 67.39 | 64.29 | |
MDM | 56.28 | 54.21 | 56.87 | 55.11 | 54.83 | 52.25 | 59.68 | 55.02 | 55.53 |
RA-MDM | 66.60 | 69.76 | 76.78 | 65.44 | 71.90 | 59.74 | 67.28 | 75.13 | 69.08 |
MEKT | 68.73 | 64.01 | 71.41 | 64.90 | 69.80 | 60.11 | 66.04 | 80.34 | 68.17 |
METL | 69.06 | — | — | — | — | — | — | — | — |
SB-TA-CSP | 68.76 | — | — | — | — | — | — | — | — |
FWR-JPDA | 67.48 | 65.05 | 73.18 | 60.88 | 69.48 | 65.67 | — | — | — |
MMDA | 69.17 | — | — | — | — | — | — | 77.21 | — |
EA-CSP-JDA | 65.99 | 62.58 | 71.51 | 61.12 | 66.11 | 59.16 | 68.02 | 71.14 | 65.70 |
TKRTS-R | 69.73 | 73.49 | 65.18 | 70.96 | 66.78 | ||||
TKRTS-L | 65.87 | 61.00 | 66.63 | 79.45 | 69.21 | ||||
TKRTS-E | 68.73 | 65.52 | 73.02 | 63.65 | 70.75 | 60.65 | 66.10 | 78.71 | 68.39 |
Tab. 3 Comparison of average classification accuracy under STS strategy
算法 | 平均分类准确率 | 均值 | |||||||
---|---|---|---|---|---|---|---|---|---|
MI2a-1 | MI2a-2 | MI2a-3 | MI2a-4 | MI2a-5 | MI2a-6 | MI2b | MI4a | ||
CSP-TJM | 55.23 | 55.40 | 56.59 | 55.30 | 54.93 | 51.90 | 59.95 | 57.52 | 55.85 |
CSP-JDA | 58.35 | 56.48 | 58.96 | 54.21 | 56.71 | 53.29 | 58.89 | 60.73 | 57.20 |
CSP-LDA | 59.28 | 55.64 | 59.89 | 57.06 | 58.40 | 54.31 | 60.81 | 55.68 | 57.63 |
EA-CSP-LDA | 64.57 | 61.27 | 70.18 | 59.34 | 64.91 | 58.73 | 67.39 | 64.29 | |
MDM | 56.28 | 54.21 | 56.87 | 55.11 | 54.83 | 52.25 | 59.68 | 55.02 | 55.53 |
RA-MDM | 66.60 | 69.76 | 76.78 | 65.44 | 71.90 | 59.74 | 67.28 | 75.13 | 69.08 |
MEKT | 68.73 | 64.01 | 71.41 | 64.90 | 69.80 | 60.11 | 66.04 | 80.34 | 68.17 |
METL | 69.06 | — | — | — | — | — | — | — | — |
SB-TA-CSP | 68.76 | — | — | — | — | — | — | — | — |
FWR-JPDA | 67.48 | 65.05 | 73.18 | 60.88 | 69.48 | 65.67 | — | — | — |
MMDA | 69.17 | — | — | — | — | — | — | 77.21 | — |
EA-CSP-JDA | 65.99 | 62.58 | 71.51 | 61.12 | 66.11 | 59.16 | 68.02 | 71.14 | 65.70 |
TKRTS-R | 69.73 | 73.49 | 65.18 | 70.96 | 66.78 | ||||
TKRTS-L | 65.87 | 61.00 | 66.63 | 79.45 | 69.21 | ||||
TKRTS-E | 68.73 | 65.52 | 73.02 | 63.65 | 70.75 | 60.65 | 66.10 | 78.71 | 68.39 |
策略 | 算法 | MI2a-1 | MI2a-2 | MI2a-3 | MI2a-4 | MI2a-5 | MI2a-6 | MI2b | MI4a |
---|---|---|---|---|---|---|---|---|---|
MTS | CSP-LDA | 0.65 | 0.66 | 0.66 | 0.65 | 0.65 | 0.66 | 0.49 | 0.48 |
EA-CSP-LDA | 0.77 | 0.71 | 0.79 | 0.77 | 0.76 | 0.68 | 0.50 | 0.50 | |
MEKT | 0.86 | 0.90 | 0.87 | 0.87 | 0.87 | 0.85 | 1.24 | 1.39 | |
TKRTS | 0.67 | 0.59 | 0.52 | 0.56 | 0.65 | 0.69 | 1.75 | 1.62 | |
STS | CSP-LDA | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.12 | 0.69 |
EA-CSP-LDA | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.15 | 0.96 | |
MEKT | 0.43 | 0.43 | 0.43 | 0.43 | 0.42 | 0.42 | 0.20 | 1.17 | |
TKRTS | 0.31 | 0.30 | 0.37 | 0.41 | 0.33 | 0.34 | 0.35 | 1.1 |
Tab. 4 Algorithm execution efficiency comparison
策略 | 算法 | MI2a-1 | MI2a-2 | MI2a-3 | MI2a-4 | MI2a-5 | MI2a-6 | MI2b | MI4a |
---|---|---|---|---|---|---|---|---|---|
MTS | CSP-LDA | 0.65 | 0.66 | 0.66 | 0.65 | 0.65 | 0.66 | 0.49 | 0.48 |
EA-CSP-LDA | 0.77 | 0.71 | 0.79 | 0.77 | 0.76 | 0.68 | 0.50 | 0.50 | |
MEKT | 0.86 | 0.90 | 0.87 | 0.87 | 0.87 | 0.85 | 1.24 | 1.39 | |
TKRTS | 0.67 | 0.59 | 0.52 | 0.56 | 0.65 | 0.69 | 1.75 | 1.62 | |
STS | CSP-LDA | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.12 | 0.69 |
EA-CSP-LDA | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.15 | 0.96 | |
MEKT | 0.43 | 0.43 | 0.43 | 0.43 | 0.42 | 0.42 | 0.20 | 1.17 | |
TKRTS | 0.31 | 0.30 | 0.37 | 0.41 | 0.33 | 0.34 | 0.35 | 1.1 |
算法 | 准确率 | 算法 | 准确率 | 算法 | 准确率 |
---|---|---|---|---|---|
MI-CNN[ | 60.69 | ConvNet[ | 72.53 | CNN-TKL | 59.19 |
C2CM[ | 74.46 | DRDA[ | 74.70 | TKRTS | 76.75 |
Tab. 5 Comparison of classification accuracy between TKRTS and deep learning methods on dataset MI2a under MTS strategy
算法 | 准确率 | 算法 | 准确率 | 算法 | 准确率 |
---|---|---|---|---|---|
MI-CNN[ | 60.69 | ConvNet[ | 72.53 | CNN-TKL | 59.19 |
C2CM[ | 74.46 | DRDA[ | 74.70 | TKRTS | 76.75 |
策略 | 算法 | 平均准确率 | 均值 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
MI2a-1 | MI2a-2 | MI2a-3 | MI2a-4 | MI2a-5 | MI2a-6 | MI2b | MI4a | |||
MTS | RTS-TKL | 66.98 | 59.41 | 62.35 | 66.13 | 65.28 | 57.64 | 65.39 | 66.29 | 63.68 |
RA-CSP-TKL | 70.52 | 76.62 | 65.43 | |||||||
RA-RTS-KSVM | 70.06 | 78.32 | 70.14 | 68.87 | 74.79 | 72.40 | ||||
RA-RTS-TKL | 75.93 | 76.54 | 82.25 | 75.39 | 79.94 | 71.99 | 69.94 | 85.43 | 77.69 | |
策略 | 算法 | 平均准确率 | 均值 | |||||||
MI2-1 | MI2-2 | MI2-3 | MI2-4 | MI2-5 | MI2-6 | MI3 | MI4 | |||
STS | RTS-TKL | 64.14 | 56.91 | 56.79 | 59.36 | 57.17 | 53.68 | 62.31 | 68.25 | 59.83 |
RA-CSP-TKL | 62.37 | 73.32 | 60.80 | 67.24 | ||||||
RA-RTS-KSVM | 64.27 | 74.06 | 68.15 | 57.25 | 69.86 | 65.97 | ||||
RA-RTS-TKL | 69.73 | 65.99 | 65.18 | 70.96 | 61.01 | 66.78 | 80.29 | 69.18 |
Tab. 6 Average accuracy comparison among sample alignment, RTS feature and TKL methods
策略 | 算法 | 平均准确率 | 均值 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
MI2a-1 | MI2a-2 | MI2a-3 | MI2a-4 | MI2a-5 | MI2a-6 | MI2b | MI4a | |||
MTS | RTS-TKL | 66.98 | 59.41 | 62.35 | 66.13 | 65.28 | 57.64 | 65.39 | 66.29 | 63.68 |
RA-CSP-TKL | 70.52 | 76.62 | 65.43 | |||||||
RA-RTS-KSVM | 70.06 | 78.32 | 70.14 | 68.87 | 74.79 | 72.40 | ||||
RA-RTS-TKL | 75.93 | 76.54 | 82.25 | 75.39 | 79.94 | 71.99 | 69.94 | 85.43 | 77.69 | |
策略 | 算法 | 平均准确率 | 均值 | |||||||
MI2-1 | MI2-2 | MI2-3 | MI2-4 | MI2-5 | MI2-6 | MI3 | MI4 | |||
STS | RTS-TKL | 64.14 | 56.91 | 56.79 | 59.36 | 57.17 | 53.68 | 62.31 | 68.25 | 59.83 |
RA-CSP-TKL | 62.37 | 73.32 | 60.80 | 67.24 | ||||||
RA-RTS-KSVM | 64.27 | 74.06 | 68.15 | 57.25 | 69.86 | 65.97 | ||||
RA-RTS-TKL | 69.73 | 65.99 | 65.18 | 70.96 | 61.01 | 66.78 | 80.29 | 69.18 |
算法 | 平均准确率 | 均值 | ||
---|---|---|---|---|
MI2a | MI2b | MI4a | ||
CSP-TKL | 63.71 | 65.36 | 64.50 | 64.52 |
RA-CSP-TKL | 72.31 | 69.44 | 77.93 | 73.23 |
RCSP-TKL | 65.20 | 65.42 | 60.71 | 63.78 |
RA-RCSP-TKL | 71.75 | 69.44 | 78.07 | 73.09 |
CNN-TKL | 59.19 | — | — | |
RTS-TKL | 62.97 | 65.39 | 66.29 | 64.88 |
RA-RTS-TKL | 77.01 | 69.94 | 85.43 | 77.46 |
Tab. 7 Average accuracy comparison of different feature extraction algorithms under MTS strategy
算法 | 平均准确率 | 均值 | ||
---|---|---|---|---|
MI2a | MI2b | MI4a | ||
CSP-TKL | 63.71 | 65.36 | 64.50 | 64.52 |
RA-CSP-TKL | 72.31 | 69.44 | 77.93 | 73.23 |
RCSP-TKL | 65.20 | 65.42 | 60.71 | 63.78 |
RA-RCSP-TKL | 71.75 | 69.44 | 78.07 | 73.09 |
CNN-TKL | 59.19 | — | — | |
RTS-TKL | 62.97 | 65.39 | 66.29 | 64.88 |
RA-RTS-TKL | 77.01 | 69.94 | 85.43 | 77.46 |
1 | 肖晓琳,辛风然,梅杰,等.自适应脑机接口研究综述[J].电子与信息学报,2023,45(7):2386-2394. |
XIAO X L, XIN F R, MEI J, et al. A review of adaptive brain-computer interface research[J]. Journal of Electronics and Information Technology, 2023, 45(7): 2386-2394. | |
2 | ALTAHERI H, MUHAMMAD G, ALSULAIMAN M, et al. Deep learning techniques for classification of ElectroEncephaloGram (EEG) Motor Imagery (MI) signals: a review[J]. Neural Computing and Applications, 2023, 35(20): 14681-14722. |
3 | 赵欣,陈志堂,王坤,等.运动想象脑-机接口新进展与发展趋势[J].中国生物医学工程学报,2019,38(1):84-93. |
ZHAO X, CHEN Z T, WANG K, et al. New developments and trends of BCI based on motor imagery[J]. Chinese Journal of Biomedical Engineering, 2019, 38(1): 84-93. | |
4 | PFURTSCHELLER G. EEG event-related desynchronization (ERD) and synchronization (ERS)[J]. Electroencephalography and Clinical Neurophysiology, 1997, 1(103): No.26. |
5 | 潘林聪,王坤,许敏鹏,等.面向运动意图解码的共空间模式及其扩展算法研究综述[J].中国生物医学工程学报,2022,41(5):577-588. |
PAN L C, WANG K, XU M P, et al. Review of researches on common spatial pattern and its extended algorithms for movement intention decoding[J]. Chinese Journal of Biomedical Engineering, 2022, 41(5): 577-588. | |
6 | 何秋妍,邓明华.通用域适应综述[J].计算机研究与发展,2024,61(1):120-144. |
HE Q Y, DENG M H. Survey of universal domain adaptation[J]. Journal of Computer Research and Development, 2024, 61(1): 120-144. | |
7 | QIN X, WANG J, CHEN Y, et al. Domain generalization for activity recognition via adaptive feature fusion[J]. ACM Transactions on Intelligent Systems and Technology, 2023, 14(1): No.9. |
8 | ZANINI P, CONGEDO M, JUTTEN C, et al. Transfer learning: a Riemannian geometry framework with applications to brain-computer interfaces[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(5): 1107-1116. |
9 | HE H, WU D. Transfer learning for brain-computer interfaces: a Euclidean space data alignment approach[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(2): 399-410. |
10 | ZHANG X, SHE Q, CHEN Y, et al. Sub-band target alignment common spatial pattern in brain-computer interface[J]. Computer Methods and Programs in Biomedicine, 2021, 207: No.106150. |
11 | LONG M, WANG J, DING G, et al. Transfer feature learning with joint distribution adaptation[C]// Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 2200-2207. |
12 | WANG J, CHEN Y, HAO S, et al. Balanced distribution adaptation for transfer learning[C]// Proceedings of the 2017 IEEE International Conference on Data Mining. Piscataway: IEEE, 2017: 1129-1134. |
13 | ZHANG W, WU D. Discriminative Joint Probability Maximum Mean Discrepancy (DJP-MMD) for domain adaptation[C]// Proceedings of the 2020 International Joint Conference on Neural Networks. Piscataway: IEEE, 2020: 1-8. |
14 | LONG M, WANG J, DING G, et al. Transfer joint matching for unsupervised domain adaptation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 1410-1417. |
15 | ZHANG W, WU D. Manifold embedded knowledge transfer for brain-computer interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(5): 1117-1127. |
16 | CAI Y, SHE Q, JI J, et al. Motor imagery EEG decoding using manifold embedded transfer learning[J]. Journal of Neuroscience Methods, 2022, 370: No.109489. |
17 | LUO T J. Dual regularized feature extraction and adaptation for cross-subject motor imagery EEG classification[C]// Proceedings of the 2022 IEEE International Conference on Bioinformatics and Biomedicine. Piscataway: IEEE, 2022: 1092-1099. |
18 | GAO Y, LIU Y, SHE Q, et al. Domain adaptive algorithm on multi-manifold embedded distributed alignment for brain-computer interfaces[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(1): 296-307. |
19 | ZHAO H, ZHENG Q, MA K, et al. Deep representation-based domain adaptation for nonstationary EEG classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(2): 535-545. |
20 | HONG X, ZHENG Q, LIU L, et al. Dynamic joint domain adaptation network for motor imagery classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 556-565. |
21 | SHE Q, CHEN T, FANG F, et al. Improved domain adaptation network based on Wasserstein distance for motor imagery EEG classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 1137-1148. |
22 | LONG M, WANG J, SUN J, et al. Domain invariant transfer kernel learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(6): 1519-1532. |
23 | DAI M, ZHENG D, LIU S, et al. Transfer kernel common spatial patterns for motor imagery brain-computer interface classification[J]. Computational and Mathematical Methods in Medicine, 2018, 2018: No.9871603. |
24 | WILLIAMS C K I, SEEGER M. Using the Nyström method to speed up kernel machines[C]// Proceedings of the 13th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2000: 661-667. |
25 | ZHANG T, ANDO R K. Analysis of spectral kernel design based semi-supervised learning[C]// Proceedings of the 18th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2005: 1601-1608. |
26 | JIN R, YANG T, MAHDAVI M, et al. Improved bounds for the Nyström method with application to kernel classification[J]. IEEE Transactions on Information Theory, 2013, 59(10): 6939-6949. |
27 | 韦泓妤,陈黎飞,罗天健. 运动想象脑电信号的跨域特征学习方法[J]. 计算机应用研究, 2022, 39(8):2340-2346, 2351. |
WEI H Y, CHEN L F, LUO T J. Cross-domain feature learning method for motor imagery EEG signals[J]. Application Research of Computers, 2022, 39(8): 2340-2346, 2351. | |
28 | DOSE H, MØLLER J S, IVERSEN H K, et al. An end-to-end deep learning approach to MI-EEG signal classification for BCIs[J]. Expert Systems with Applications, 2018, 114: 532-542. |
29 | SAKHAVI S, GUAN C, YAN S. Learning temporal information for brain-computer interface using convolutional neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018; 29(11):5619-5629. |
30 | SCHIRRMEISTER R T, SPRINGENBERG J T, FIEDERER L D J, et al. Deep learning with convolutional neural networks for EEG decoding and visualization[J]. Human Brain Mapping, 2017, 38(11): 5391-5420. |
31 | LOTTE F, GUAN C. Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(2): 355-362. |
32 | MISHUHINA V, JIANG X. Complex common spatial patterns on time-frequency decomposed EEG for brain-computer interface[J]. Pattern Recognition, 2021, 115: No.107918. |
33 | LUO T J. Parallel genetic algorithm based common spatial patterns selection on time-frequency decomposed EEG signals for motor imagery brain-computer interface[J]. Biomedical Signal Processing and Control, 2023, 80(Pt 1): No.104397. |
[1] | Xuan CAO, Tianjian LUO. Dynamic multi-domain adversarial learning method for cross-subject motor imagery EEG signals [J]. Journal of Computer Applications, 2024, 44(2): 645-653. |
[2] | Yu PENG, Yaolian SONG, Jun YANG. Motor imagery electroencephalography classification based on data augmentation [J]. Journal of Computer Applications, 2022, 42(11): 3625-3632. |
[3] | HUO Shoujun, HAO Yan, SHI Huiyu, DONG Yanqing, CAO Rui. Pattern recognition of motor imagery EEG based on deep convolutional network [J]. Journal of Computer Applications, 2021, 41(4): 1042-1048. |
[4] | Fei LUO, Pengfei LIU, Yuan LUO, Simeng ZHU. Motor imagery EEG feature extraction method based on multi-feature fusion [J]. Journal of Computer Applications, 2020, 40(2): 616-620. |
[5] | HU Zhangfang, ZHANG Li, HUANG Lijia, LUO Yuan. Motor imagery electroencephalogram signal recognition method based on convolutional neural network in time-frequency domain [J]. Journal of Computer Applications, 2019, 39(8): 2480-2483. |
[6] | HU Min, LI Chong, LU Rongrong, HUANG Hongcheng. Performance analysis of motor imagery training based on 3D visual guidance [J]. Journal of Computer Applications, 2018, 38(3): 836-841. |
[7] | HAN Min, SUN Zhuoran. Epileptic EEG signals classification based on wavelet transform and AdaBoost extreme learning machine [J]. Journal of Computer Applications, 2015, 35(9): 2701-2705. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||