[1] YAO W, LIU T, DAI J, et al. Multiscale permutation entropy analysis of electroencephalogram[J]. Acta Physica Sinica, 2014, 63(7): 78704-078704. (姚文坡, 刘铁兵, 戴加飞,等. 脑电信号的多尺度排列熵分析[J]. 物理学报, 2014, 63(7): 78704-078704.) [2] FU K, QU J, CHAI Y, et al. Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM [J]. Biomedical Signal Processing and Control, 2014, 13: 15-22. [3] LI P, WANG X, LI F, et al. Autoregressive model in the Lp norm space for EEG analysis [J]. Journal of Neuroscience Methods, 2015, 240: 170-178. [4] CHUA K C, CHANDRAN V, ACHARYA U R, et al. Analysis of epileptic EEG signals using higher order spectra [J]. Journal of Medical Engineering & Technology, 2009, 33(1): 42-50. [5] ÜEBEYLI E D. Wavelet/mixture of experts network structure for EEG signals classification [J]. Expert Systems with Applications: An International Journal, 2008, 34(3): 1954-1962. [6] HU H-W, CHEN Y-L, TANG K. A novel decision-tree method for structured continuous-label classification [J]. IEEE Transactions on Cybernetics, 2013, 43(6): 1734-1746. [7] ZHANG G P. Neural networks for classification: a survey [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2000, 30(4): 451-462. [8] LI G, WANG W, ZHAGN S. Application of SVM in EEG signal classification [J]. Journal of Computer Applications, 2006, 26(6): 1431-1433. (李钢, 王蔚, 张胜. 支持向量机在脑电信号分类中的应用[J].计算机应用,2006,26(6): 1431-1433.) [9] CHEN L, ZHANG J, ZOU J, et al. A framework on wavelet-based nonlinear features and extreme learning machine for epileptic seizure detection [J]. Biomedical Signal Processing and Control, 2014, 10:1-10. [10] SONG Y, ZHANG J. Automatic recognition of epileptic EEG patterns via extreme learning machine and multiresolution feature extraction [J]. Expert Systems with Applications, 2013, 40(14): 5477-5789. [11] CAO Y, MIAO Q, LIU J, et al.Advance and prospects of AdaBoost algorithm[J]. Acta Automatica Sinica, 2013, 39(6): 745-758. (曹莹, 苗启广, 刘家辰, 等. AdaBoost 算法研究进展与展望[J].自动化学报, 2013, 39(6): 745-758.) [12] CANG S, YU H. Mutual information based input feature selection for classification problems [J]. Decision Support Systems, 2012, 54(1): 691-698. [13] ZHANG X, XU X, LING Z, et al. Seizure detection based on max-relevance and min-redundancy criteria and extreme l earning machine [J]. Journal of Computer Applications, 2014, 34(12): 3614-3617. (张新静, 徐欣, 凌至培, 等. 基于最大相关和最小冗余准则及极限学习机的癫痫发作检测方法[J].计算机应用, 2014, 34(12): 3614-3617.) [14] WANG X, HAN M. Multivariate chaotic time series prediction based on extreme learning machine [J]. Acta Physica Sinica, 2012, 61(8): 97-105. (王新迎, 韩敏. 基于极端学习机的多变量混沌时间序列预测[J]. 物理学报, 2012, 61(8): 97-105.) [15] ANDRZEJAK R G, LEHNERTZ K, MOMANN F, et al. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state [J]. Physical Review E, 2001, 64(6): 061907. [16] SUBASI A. EEG signal classification using wavelet feature extraction and a mixture of expert model [J]. Expert Systems with Applications, 2007, 32(4): 1084-1093. [17] SKURICHINA M, DUIN R P W. Bagging, boosting and the random subspace method for linear classifiers [J]. Pattern Analysis & Applications, 2002, 5(2): 121-135. [18] KANNATHAL N, CHOO M L, ACHARYA U R, et al. Entropies for detection of epilepsy in EEG [J]. Computer Methods and Programs in Biomedicine, 2005, 80(3): 187-194. [19] GUO L, RIVERO D, SEOANE J A, et al. Classification of EEG signals using relative wavelet energy and artificial neural networks [C]//CEC'09: Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation. New York: ACM, 2009: 177-184. [20] CHUA K C, CHANDRAN V, ACHARYA R, et al. Automatic identification of epilepsy by HOS and power spectrum parameters using EEG signals: a comparative study [C]//EMBS 2008: Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2008: 3824-3827. [21] ÜEBEYLI E D. Analysis of EEG signals using Lyapunov exponents [J]. Neural Network World, 2006, 16(3): 257-273. |