[1] NICOLAS-ALONSO L F, GOMEZ-GIL J. Brain computer interfaces, a review[J]. Sensors, 2012, 12(2):1211-1279. [2] 杨立才,李佰敏,李光林,等.脑-机接口技术综述[J].电子学报,2005,33(7):1234-1241. (YANG L C, LI B M, LI G L, et al. A review of brain-computer interface technology[J]. Acta Electronica Sinica, 2005, 33(7):1234-1241.) [3] SCHUSTER C, HILFIKER R, AMFT O, et al. Best practice for motor imagery:a systematic literature review on motor imagery training elements in five different disciplines[J]. BMC Medicine, 2011, 9:75. [4] ONO T, KIMURA A, USHIBA J. Daily training with realistic visual feedback improves reproducibility of event-related desynchronisation following hand motor imagery[J]. Clinical Neurophysiology, 2013, 124(9):1779-1786. [5] SOLLFRANK T, HART D, GOODSELL R, et al. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery[J]. Frontiers in Human Neuroscience, 2015, 9(1):463-470. [6] VOURVOPOULOS A, BADIA S B I. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction:a within-subject analysis[J]. Journal of Neuroengineering and Rehabilitation, 2016, 13:69. [7] LEEB R, KEINRATH C, FRIEDMAN D, et al. Walking by thinking:the brainwaves are crucial, not the muscles![J]. Presence:Teleoperators and Virtual Environments-Special Issue:8th Annual International Workshop on Presence Ⅱ, 2006, 15(5):500-514. [8] PFURTSCHELLER G, NEUPER C, MVLLER G R, et al. Graz-BCI:state of the art and clinical applications[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(2):177-180. [9] NEUPER C, SCHERER R, WRIESSNEGGER S, et al. Motor imagery and action observation:modulation of sensorimotor brain rhythms during mental control of a brain-computer interface[J]. Clinical Neurophysiology, 2009, 120(2):239-247. [10] PFURTSCHELLER G, SCHERER R, LEEB R, et al. Viewing moving objects in virtual reality can change the dynamics of sensorimotor EEG rhythms[J]. Presence:Teleoperators and Virtual Environments, 2007, 16(1):111-118. [11] LIANG S, CHOI K S, QIN J, et al. Enhancing training performance for brain-computer interface with object-directed 3D visual guidance[J]. International Journal of Computer Assisted Radiology and Surgery, 2016, 11(11):2129-2137. [12] 李明爱,崔燕,杨金福,等.基于HHT和CSSD的多域融合自适应脑电特征提取方法[J].电子学报,2013,41(12):2479-2486. (LI M A, CUI Y, YANG J F, et al. An adaptive multi-domain fusion feature extraction with method HHT and CSSD[J]. Acta Electronica Sinica, 2013, 41(12):2479-2486.) [13] 刘冲,赵海滨,李春胜,等.基于CSP与SVM算法的运动想象脑电信号分类[J].东北大学学报(自然科学版),2010,31(8):1098-1101. (LIU C, ZHAO H B, LI C S, et al. CSP/SVM-based EEG classification of imagined hand movements[J]. Journal of Northeastern University (Natural Science), 2010, 31(8):1098-1101.) [14] 赵沁平.虚拟现实综述[J].中国科学:信息科学,2009,39(1):2-46. (ZHAO Q P. A survey on virtual reality[J]. Science China Information Sciences, 2009, 39(1):2-46) [15] VOURVOPOULOS A, BERMUDEZ I BADIA S, LIAROKAPIS F. EEG correlates of video game experience and user profile in motor-imagery-based brain-computer interaction[J]. Visual Computer, 2017, 33(4):533-546. [16] GRIMM F, NAROS G, GHARABAGHI A. Closed-loop task difficulty adaptation during virtual reality reach-to-grasp training assisted with an exoskeleton for stroke rehabilitation[J]. Frontiers in Neuroscience, 2016, 10:518. [17] VOURVOPOULOS A, CARDONA J E M, BADIA S B I. Optimizing motor imagery neurofeedback through the use of multimodal immersive virtual reality and motor priming[C]//ICVR 2015:Proceedings of the 2015 International Conference on Virtual Rehabilitation Proceedings. Piscataway, NJ:IEEE, 2015:228-234. [18] MUKAINO M, ONO T, SHINDO K, et al. Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke[J]. Journal of Rehabilitation Medicine, 2014, 46(4):378-82. [19] 黄秉宪.脑的高级功能与神经网络[M].北京:科学出版社,2000:133-140. (HUANG B X. Advanced Function of Brain and Neural Network[M]. Beijing:Science Press, 2000:133-140.) |