Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (9): 2569-2577.DOI: 10.11772/j.issn.1001-9081.2020111744

Special Issue: 数据科学与技术

• Data science and technology • Previous Articles     Next Articles

Impact and enhancement of similarity features on link prediction

CAI Biao, LI Ruicen, WU Yuanyuan   

  1. College of Computer Science and Cyber Security, Chengdu University of Technology, Chengdu Sichuan 610059, China
  • Received:2020-11-09 Revised:2021-03-01 Online:2021-09-10 Published:2021-05-08
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China (61802034, 61701049), the Soft Science Research Project of Sichuan Province (2019JDR0117).

相似性特征对链路预测的影响与增强

蔡彪, 李蕊岑, 吴媛媛   

  1. 成都理工大学 计算机与网络安全学院, 成都 610059
  • 通讯作者: 蔡彪
  • 作者简介:蔡彪(1973-),男,四川南充人,教授,博士,CCF会员,主要研究方向:人工智能、社会媒体挖掘、推荐系统、社区发现;李蕊岑(1995-),女,四川南充人,硕士研究生,主要研究方向:复杂网络;吴媛媛(1986-),女,重庆人,副教授,博士,CCF会员,主要研究方向:图像处理、视频分析、数据挖掘。
  • 基金资助:
    国家自然科学基金资助项目(61802034,61701049);四川省软科学研究项目(2019JDR0117)。

Abstract: Link prediction focuses on the design of prediction algorithms that can describe a given network mechanism more accurately to achieve the prediction result with higher accuracy. Based on an analysis of the existing research achievements, it is found that the similarity characteristics of a network has a great impact on the link prediction method used. In networks with low tag similarity between nodes, increasing the tag similarity is able to improve the prediction accuracy; in networks with high tag similarity between nodes, more attention should be paid to the contribution of structural information to link prediction to improve the prediction accuracy. Then, a tag-weighted similarity algorithm was proposed by weighting the tags, which was able to improve the accuracy of link prediction in networks with low similarity. Meanwhile, in networks with relatively high similarity, the structural information of the network was introduced into the node similarity calculation, and the accuracy of link prediction was improved through the preferential attachment mechanism. Experimental results on four real networks show that the proposed algorithm achieves the highest accuracy compared to the comparison algorithms Cosine Similarity between Tag Systems (CSTS), Preferential Attachment (PA), etc. According to the network similarity characteristics, using the proposed corresponding algorithm for link prediction can obtain more accurate prediction results.

Key words: complex network, link prediction, tag system, weighted tag, preferential attachment mechanism

摘要: 链路预测的主要任务是设计一个能够更加准确地描述给定网络机制的预测算法,从而得到更准确的预测结果。在分析现有研究成果基础上发现,网络的相似性特征对采用的链路预测方法有较大的影响:在节点间标签相似性较低的网络中,提高标签的相似性可以提高预测的准确性;而在节点间标签相似性较高的网络中,则应更加关注结构信息对于链路预测的贡献来提高预测的准确性。随后,通过对标签进行加权处理,提出带权值的标签相似性算法,在低相似性网络中能够提高链路预测的准确性。同时,在较高相似性网络中,将网络的结构信息引入到节点的相似性计算中,并通过偏好链接机制来提升链路预测的准确性。在四个真实网络上的实验结果表明,所提算法相对于标签系统间的余弦相似性(CSTS)算法、偏好链接(PA)等算法取得了最高的准确率。根据网络相似性特征,采用所提出的对应算法进行链路预测能够得到更准确的预测结果。

关键词: 复杂网络, 链路预测, 标签系统, 带权值标签, 偏好链接机制

CLC Number: