1 |
朱飞,张煦尧,刘成林. 类别增量学习研究进展和性能评价[J]. 自动化学报, 2023, 49(3): 635-660.
|
2 |
ZHOU D W, WANG Q W, QI Z H, et al. Deep class-incremental learning: a survey[EB/OL]. [2023-09-13]..
|
3 |
CARPENTER G A, GROSSBERG S. A massively parallel architecture for a self-organizing neural pattern recognition machine[J]. Computer Vision, Graphics, and Image Processing, 1987, 37(1): 54-115.
|
4 |
MERMILLOD M, BUGAISKA A, BONIN P. The stability-plasticity dilemma: investigating the continuum from catastrophic forgetting to age-limited learning effects[J]. Frontiers in Psychology, 2013, 4: No.54.
|
5 |
McCLOSKEY M, COHEN N J. Catastrophic interference in connectionist networks: the sequential learning problem[J]. Psychology of Learning and Motivation, 1989, 24: 109-165.
|
6 |
FRENCH R M. Catastrophic forgetting in connectionist networks[J]. Trends in Cognitive Sciences, 1999, 3(4): 128-135.
|
7 |
ROBINS A. Catastrophic forgetting, rehearsal and pseudorehearsal[J]. Connection Science, 1995, 7(2): 123-146.
|
8 |
XIN X, ZHONG Y, HOU Y, et al. Memory-free generative replay for class incremental learning[EB/OL]. [2023-10-07]..
|
9 |
黄震华,杨顺志,林威,等. 知识蒸馏研究综述[J]. 计算机学报, 2022, 45(3): 624-653.
|
10 |
WANG L, YOON K J. Knowledge distillation and student-teacher learning for visual intelligence: a review and new outlooks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 3048-3068.
|
11 |
HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. [2023-07-30]..
|
12 |
GOTMARE A, KESKAR N S, XIONG C, et al. A closer look at deep learning heuristics: learning rate restarts, warmup and distillation[EB/OL]. [2023-07-30]. .
|
13 |
ROMERO A, BALLAS N, KAHOU S E, et al. FitNets: hints for thin deep nets[EB/OL]. [2023-07-15]. .
|
14 |
PARK W, KIM D, LU Y, et al. Relational knowledge distillation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3962-3971.
|
15 |
SMITH J, HSU Y C, BALLOCH J, et al. Always be dreaming: a new approach for data-free class-incremental learning[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9354-9364.
|
16 |
MORDVINTSEV A, OLAH C, TYKA M. Inceptionism: going deeper into neural networks[EB/OL]. [2023-07-16]. .
|
17 |
CHEN H, WANG Y, XU C, et al. Data-free learning of student networks[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3513-3521.
|
18 |
YIN H, MOLCHANOV P, ALVAREZ J M, et al. Dreaming to distill: data free knowledge transfer via DeepInversion [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8712-8721.
|
19 |
GAO Q, ZHAO C, GHANEM B, et al. R-DFCIL: relation-guided representation learning for data-free class incremental learning[C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13683. Cham: Springer, 2022: 423-439.
|
20 |
MAO Q, LEE H Y, TSENG H Y, et al. Mode seeking generative adversarial networks for diverse image synthesis[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:1429-1437.
|
21 |
LI Z, HOIEM D. Learning without forgetting [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(12): 2935-2947.
|
22 |
KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images [R/OL]. [2023-07-17]. .
|
23 |
LE Y, YANG X. Tiny ImageNet visual recognition challenge [R/OL]. [2023-07-18]. .
|
24 |
LIU Y, PARISOT S, SLABAUGH G, et al. More classifiers, less forgetting: a generic multi-classifier paradigm for incremental learning[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12371. Cham: Springer, 2020:699-716.
|
25 |
SHIN H, LEE J K, KIM J, et al. Continual learning with deep generative replay [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 2994-3003.
|
26 |
REBUFFI S A, KOLESNIKOV A, SPERL G, et al. iCaRL: incremental classifier and representation learning [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5533-5542.
|
27 |
HOU S, PAN X, LOY C C, et al. Learning a unified classifier incrementally via rebalancing [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:831-839.
|