Journal of Computer Applications ›› 0, Vol. ›› Issue (): 12-17.DOI: 10.11772/j.issn.1001-9081.2023111716

• Artificial intelligence • Previous Articles     Next Articles

Data-free class incremental learning based on knowledge distillation

Zhanyang LIU, Jinfeng LIU()   

  1. School of Information Engineering,Ningxia University,Yinchuan Ningxia 750021,China
  • Received:2023-12-11 Revised:2024-03-23 Accepted:2024-06-27 Online:2024-06-28 Published:2024-12-31
  • Contact: Jinfeng LIU

基于知识蒸馏的不存储旧数据的类增量学习

刘展阳, 刘进锋()   

  1. 宁夏大学 信息工程学院,银川 750021
  • 通讯作者: 刘进锋
  • 作者简介:刘展阳(1997—),男,广东梅州人,硕士研究生,主要研究方向:深度学习、增量学习
    刘进锋(1971—),男,宁夏银川人,教授,博士研究生,CCF会员,主要研究方向:深度学习、智能信息处理。
  • 基金资助:
    宁夏自然科学基金资助项目(2023AAC03126)

Abstract:

Previous data-free class incremental learning methods can generate class data for learned tasks through techniques such as model inversion, but they cannot alleviate the model's plasticity-stability dilemma effectively, and these synthesis techniques are easy to ignore the diversity of data. To address these issues, a knowledge distillation-based incremental learning strategy was proposed. Firstly, local cross-entropy loss was utilized to facilitate the model in learning knowledge related to new classes. Secondly, a combination of distillation based on output features was introduced to reduce forgetting of knowledge related to old classes. Finally, the distillation based on relational features was applied to alleviate model's conflicts between learning representation of new classes and retaining representation of old classes. Furthermore, to enhance the diversity of generated data, a regularization term was introduced on the basis of model inversion to prevent the generated samples from being similar excessively. Experimental results show that compared to Relation-guided representation learning for Data-Free Class Incremental Learning (R?DFCIL), on CIFAR-100 dataset, the proposed model achieves average incremental accuracy improvements of 0.25 and 0.18 percentage points on 5-task and 10-task scenarios respectively, while on Tiny-ImageNet dataset, the corresponding improvements are 0.21 and 0.07 percentage points respectively. Besides, the proposed model does not require additional classifiers for fine-tuning, and the proposed diversity regularization item provides a way for improvement in data-free class incremental learning.

Key words: knowledge distillation, class incremental learning, model inversion, diversity regularization, deep learning

摘要:

以往的不存储旧数据的类增量学习方法虽然能通过模型反转等技术生成已学任务中的类别数据,但未能有效缓解模型的可塑性-稳定性困境,并且这些合成技术很容易忽略数据的多样性。针对以上问题,提出一种基于知识蒸馏的增量学习策略。首先,采用局部交叉熵损失促使模型学习新的类别知识;其次,引入基于输出特征的蒸馏组合,以减少对旧类别知识的遗忘;最后,使用基于关系特征的蒸馏,从而缓解模型在学习新类别表征与保留旧类别表征之间的冲突。而且,为了增加生成数据的多样性,在模型反转的基础上引入一个正则项,以防止生成的样本过于相似。实验结果表明,与基于关系引导表示学习的不存储旧数据的类增量学习(R-DFCIL)相比:在CIFAR-100数据集上,所提模型在5个任务和10个任务上的平均增量准确率分别提高了0.25和0.18个百分点;在Tiny-ImageNet数据集上,相应的提升分别为0.21和0.07个百分点。此外,所提模型不需要额外的分类器微调,且所提多样性正则项为不存储旧数据的类增量学习提供了一种改进方向。

关键词: 知识蒸馏, 类增量学习, 模型反转, 多样性正则, 深度学习

CLC Number: