Journal of Computer Applications ›› 0, Vol. ›› Issue (): 18-23.DOI: 10.11772/j.issn.1001-9081.2024030297
• Artificial intelligence • Previous Articles Next Articles
Siyuan REN1,2, Cheng PENG1,2(), Ke CHEN1,2, Zhiyi HE1,2
Received:
2024-03-18
Revised:
2024-04-01
Accepted:
2024-04-07
Online:
2025-01-24
Published:
2024-12-31
Contact:
Cheng PENG
任思远1,2, 彭程1,2(), 陈科1,2, 何智毅1,2
通讯作者:
彭程
作者简介:
任思远(1997—),男,山西晋城人,硕士研究生,主要研究方向:自然语言处理CLC Number:
Siyuan REN, Cheng PENG, Ke CHEN, Zhiyi HE. Cross-lingual knowledge transfer method based on alignment of representational space structures[J]. Journal of Computer Applications, 0, (): 18-23.
任思远, 彭程, 陈科, 何智毅. 基于表征空间结构对齐的跨语言知识迁移方法[J]. 《计算机应用》唯一官方网站, 0, (): 18-23.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024030297
模型 | MR | MPQA | TREC | 平均 |
---|---|---|---|---|
SimCSE | 89.19 | 89.60 | 88.20 | 89.08 |
SimCSErotate | 89.06 | 89.65 | 88.40 | 89.04 |
SimCSEadd | 87.84 | 88.97 | 81.20 | 86.00 |
DeCLUTR | 89.70 | 87.76 | 90.20 | 89.22 |
DeCLUTRrotate | 88.16 | 87.73 | 90.40 | 88.76 |
DeCLUTRadd | 70.68 | 74.90 | 62.80 | 69.46 |
模型 | MR | MPQA | TREC | 平均 |
---|---|---|---|---|
SimCSE | 89.19 | 89.60 | 88.20 | 89.08 |
SimCSErotate | 89.06 | 89.65 | 88.40 | 89.04 |
SimCSEadd | 87.84 | 88.97 | 81.20 | 86.00 |
DeCLUTR | 89.70 | 87.76 | 90.20 | 89.22 |
DeCLUTRrotate | 88.16 | 87.73 | 90.40 | 88.76 |
DeCLUTRadd | 70.68 | 74.90 | 62.80 | 69.46 |
模型 | en | ar | es | zh | tr | fr | 平均 |
---|---|---|---|---|---|---|---|
mBERT | 51.70 | 46.37 | 52.02 | 45.15 | 48.24 | 50.82 | 49.05 |
Align | 66.41 | 61.18 | 63.11 | 62.95 | 62.22 | 63.25 | 63.19 |
mSimCSE | 69.54 | 59.14 | 66.05 | 64.49 | 59.26 | 63.61 | 63.68 |
TransCSE/DA | 70.94 | 61.98 | 68.82 | 64.99 | 64.71 | 66.93 | 66.40 |
TransCSE | 71.28 | 62.50 | 69.50 | 65.73 | 65.11 | 67.88 | 67.00 |
模型 | en | ar | es | zh | tr | fr | 平均 |
---|---|---|---|---|---|---|---|
mBERT | 51.70 | 46.37 | 52.02 | 45.15 | 48.24 | 50.82 | 49.05 |
Align | 66.41 | 61.18 | 63.11 | 62.95 | 62.22 | 63.25 | 63.19 |
mSimCSE | 69.54 | 59.14 | 66.05 | 64.49 | 59.26 | 63.61 | 63.68 |
TransCSE/DA | 70.94 | 61.98 | 68.82 | 64.99 | 64.71 | 66.93 | 66.40 |
TransCSE | 71.28 | 62.50 | 69.50 | 65.73 | 65.11 | 67.88 | 67.00 |
模型 | en | ar | es | 平均 |
---|---|---|---|---|
mBERT | 37.03 | 41.42 | 33.85 | 37.43 |
Align | 82.13 | 60.96 | 76.73 | 73.27 |
mSimCSE | 86.35 | 65.12 | 83.63 | 78.03 |
TransCSE/DA | 85.57 | 68.77 | 85.69 | 80.01 |
TransCSE | 86.03 | 70.11 | 85.97 | 80.70 |
模型 | en | ar | es | 平均 |
---|---|---|---|---|
mBERT | 37.03 | 41.42 | 33.85 | 37.43 |
Align | 82.13 | 60.96 | 76.73 | 73.27 |
mSimCSE | 86.35 | 65.12 | 83.63 | 78.03 |
TransCSE/DA | 85.57 | 68.77 | 85.69 | 80.01 |
TransCSE | 86.03 | 70.11 | 85.97 | 80.70 |
1 | NOORALAHZADEH F, BEKOULIS G, BJERVA J, et al. Zero-shot cross-lingual transfer with meta learning [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 4547-4562. |
2 | GAO T, YAO X, CHEN D. SimCSE: simple contrastive learning of sentence embeddings [C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 6894-6910. |
3 | BOWMAN S R, ANGELI G, POTTS C, et al. A large annotated corpus for learning natural language inference [C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 632-642. |
4 | WILLIAMS A, NANGIA N, BOWMAN S. A broad-coverage challenge corpus for sentence understanding through inference [C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Stroudsburg: ACL, 2018: 1112-1122. |
5 | CONNEAU A, RINOTT R, LAMPLE G, et al. XNLI: evaluating cross-lingual sentence representations [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018:2475-2485. |
6 | PIKULIAK M, ŠIMKO M, BIELIKOVÁ M. Cross-lingual learning for text processing: a survey [J]. Expert Systems with Applications, 2021, 165: No.113765. |
7 | Research Google. Multilingual BERT [EB/OL]. [2024-01-31]. . |
8 | CONNEAU A, KHANDELWAL K, GOYAL N, et al. Unsupervised cross-lingual representation learning at scale [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 8440-8451. |
9 | FENG X, FENG X, QIN B, et al. Improving low resource named entity recognition using cross-lingual knowledge transfer [C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: IJCAI.org, 2018: 4071-4077. |
10 | REIMERS N, GUREVYCH I. Making monolingual sentence embeddings multilingual using knowledge distillation [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 4512-4525. |
11 | PARK W, KIM D, LU Y, et al. Relational knowledge distillation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3962-3971. |
12 | CER D, DIAB M, AGIRRE E, et al. SemEval-2017 Task 1: semantic textual similarity multilingual and cross-lingual focused evaluation [C]// Proceedings of the 11th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2017: 1-14. |
13 | GAO J, HE D, TAN X, et al. Representation degeneration problem in training natural language generation models [EB/OL]. [2024-01-31].. |
14 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. |
15 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
16 | XU L, XIE H, LI Z, et al. Contrastive learning models for sentence representations [J]. ACM Transactions on Intelligent Systems and Technology, 2023, 14(4): No.67. |
17 | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting [J]. Journal of Machine Learning Research, 2014, 15: 1929-1958. |
18 | YAN Y, LI R, WANG S, et al. ConSERT: a contrastive framework for self-supervised sentence representation transfer [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 5065-5075. |
19 | WU X, GAO C, ZANG L, et al. ESimCSE: enhanced sample building method for contrastive learning of unsupervised sentence embedding[C]// Proceedings of the 29th International Conference on Computational Linguistics. [S.l.]: International Committee on Computational Linguistics, 2022: 3898-3907. |
20 | REIMERS N, GUREVYCH I. Sentence-BERT: sentence embeddings using Siamese BERT-networks [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 3982-3992. |
21 | HUANG J T, LI J, YU D, et al. Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers [C]// Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2013: 7304-7308. |
22 | ARORA V, LAHIRI A, REET H. Attribute based shared hidden layers for cross-language knowledge transfer [C]// Proceedings of the 2016 IEEE Spoken Language Technology Workshop. Piscataway: IEEE, 2016: 617-623. |
23 | WANG Y, WU A, NEUBIG G. English contrastive learning can learn universal cross-lingual sentence embeddings [C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2022:9122-9133. |
24 | CHOUSA K, NAGATA M, NISHINO M, et al. SpanAlign: sentence alignment method based on cross-language span prediction and ILP[C]// Proceedings of the 28th International Conference on Computational Linguistics. [S.l.]: International Committee on Computational Linguistics, 2020: 4750-4761. |
25 | WANG L, ZHAO W, LIU J. Aligning cross-lingual sentence representations with dual momentum contrast [C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 3807-3815. |
26 | CONNEAU A, LAMPLE G. Cross-lingual language model pretraining[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 7059-7069. |
27 | CHI Z, DONG L, WEI F, et al. InfoXLM: an information-theoretic framework for cross-lingual language model pre-training [C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 3576-3588. |
28 | ARTETXE M, SCHWENK H. Massively multilingual sentence embeddings for zero-shot cross-lingual transfer and beyond [J]. Transactions of the Association for Computational Linguistics, 2019, 7: 597-610. |
29 | HUANG H, LIANG Y, DUAN N, et al. Unicoder: a universal language encoder by pre-training with multiple cross-lingual tasks [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 2485-2494. |
30 | GIORGI J, NITSKI O, WANG B, et al. DeCLUTR: deep contrastive learning for unsupervised textual representations [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 879-895. |
31 | PANG B, LEE L. Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales [C]// Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2005: 115-124. |
32 | WANG S, MANNING C D. Baselines and bigrams: simple, good sentiment and topic classification [C]// Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg: ACL, 2012: 90-94. |
33 | VOORHEES E M, TICE D M. Building a question answering test collection [C]// Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2000: 200-207. |
34 | CONNEAU A, KIELA D. SentEval: an evaluation toolkit for universal sentence representations [C]// Proceedings of the 11th International Conference on Language Resources and Evaluation. Paris: European Language Resources Association, 2018: 1699-1704. |
35 | EL-KISHKY A, CHAUDHARY V, GUZMÁN F, et al. CCAligned: a massive collection of cross-lingual Web-document pairs [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 5960-5969. |
[1] | Weichao DANG, Xinyu WEN, Gaimei GAO, Chunxia LIU. Multi-view and multi-scale contrastive learning for graph collaborative filtering [J]. Journal of Computer Applications, 2025, 45(4): 1061-1068. |
[2] | Jie YANG, Tashi NYIMA, Dongrub RINCHEN, Jindong QI, Dondrub TSHERING. Tibetan word segmentation system based on pre-trained model tokenization reconstruction [J]. Journal of Computer Applications, 2025, 45(4): 1199-1204. |
[3] | Renjie TIAN, Mingli JING, Long JIAO, Fei WANG. Recommendation algorithm of graph contrastive learning based on hybrid negative sampling [J]. Journal of Computer Applications, 2025, 45(4): 1053-1060. |
[4] | Yuanlong WANG, Tinghua LIU, Hu ZHANG. Commonsense question answering model based on cross-modal contrastive learning [J]. Journal of Computer Applications, 2025, 45(3): 732-738. |
[5] | Xiaolin QIN, Xu GU, Dicheng LI, Haiwen XU. Survey and prospect of large language models [J]. Journal of Computer Applications, 2025, 45(3): 685-696. |
[6] | Wei CHEN, Changyong SHI, Chuanxiang MA. Crop disease recognition method based on multi-modal data fusion [J]. Journal of Computer Applications, 2025, 45(3): 840-848. |
[7] | Yalun WANG, Yangsen ZHANG, Siwen ZHU. Headline generation model with position embedding for knowledge reasoning [J]. Journal of Computer Applications, 2025, 45(2): 345-353. |
[8] | Sheng YANG, Yan LI. Contrastive knowledge distillation method for object detection [J]. Journal of Computer Applications, 2025, 45(2): 354-361. |
[9] | Xuewen YAN, Zhangjin HUANG. Few-shot image classification method based on contrast learning [J]. Journal of Computer Applications, 2025, 45(2): 383-391. |
[10] | Xueqiang LYU, Tao WANG, Xindong YOU, Ge XU. HTLR: named entity recognition framework with hierarchical fusion of multi-knowledge [J]. Journal of Computer Applications, 2025, 45(1): 40-47. |
[11] | Xiaosheng YU, Zhixin WANG. Sequential recommendation model based on multi-level graph contrastive learning [J]. Journal of Computer Applications, 2025, 45(1): 106-114. |
[12] | Qi SHUAI, Hairui WANG, Guifu ZHU. Chinese story ending generation model based on bidirectional contrastive training [J]. Journal of Computer Applications, 2024, 44(9): 2683-2688. |
[13] | Xingyao YANG, Yu CHEN, Jiong YU, Zulian ZHANG, Jiaying CHEN, Dongxiao WANG. Recommendation model combining self-features and contrastive learning [J]. Journal of Computer Applications, 2024, 44(9): 2704-2710. |
[14] | Quanmei ZHANG, Runping HUANG, Fei TENG, Haibo ZHANG, Nan ZHOU. Automatic international classification of disease coding method incorporating heterogeneous information [J]. Journal of Computer Applications, 2024, 44(8): 2476-2482. |
[15] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||