Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (1): 136-143.DOI: 10.11772/j.issn.1001-9081.2024010044
• Cyber security • Previous Articles Next Articles
Liang ZHU1, Jingzhe MU1, Hongqiang ZUO2, Jingzhong GU2(), Fubao ZHU1
Received:
2024-01-17
Revised:
2024-03-27
Accepted:
2024-03-27
Online:
2024-05-09
Published:
2025-01-10
Contact:
Jingzhong GU
About author:
ZHU Liang, born in 1987, Ph. D., associate professor. His research interests include smart recommendation, privacy protection.Supported by:
通讯作者:
谷晶中
作者简介:
朱亮(1987—),男,河南焦作人,副教授,博士,主要研究方向:智能推荐、隐私保护;基金资助:
CLC Number:
Liang ZHU, Jingzhe MU, Hongqiang ZUO, Jingzhong GU, Fubao ZHU. Location privacy-preserving recommendation scheme based on federated graph neural network[J]. Journal of Computer Applications, 2025, 45(1): 136-143.
朱亮, 慕京哲, 左洪强, 谷晶中, 朱付保. 基于联邦图神经网络的位置隐私保护推荐方案[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 136-143.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024010044
1 | YADAV V K, ANDOLA N, VERMA S, et al. P2LBS: privacy provisioning in location-based services [J]. IEEE Transactions on Services Computing, 2023, 16(1): 466-477. |
2 | XIONG X, QIAO S, HAN N, et al. Affective impression: sentiment-awareness POI suggestion via embedding in heterogeneous LBSNs [J]. IEEE Transactions on Affective Computing, 2022, 13(1): 272-284. |
3 | LIU Y, YIN M, ZHOU X. A collaborative filtering algorithm with intragroup divergence for POI group recommendation [J]. Applied Sciences, 2021, 11(12): No.5416. |
4 | ZHANG Y, YIN C, WU Q, et al. Location-aware deep collaborative filtering for service recommendation [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(6): 3796-3807. |
5 | WANG W, QUAN Z, ZHAO S, et al. User-context collaboration and tensor factorization for GNN-based social recommendation [J]. IEEE Transactions on Network Science and Engineering, 2023, 10(6): 3320-3330. |
6 | 刘欢,李晓戈,胡立坤,等.基于知识图谱驱动的图神经网络推荐模型[J].计算机应用, 2021, 41(7): 1865-1870. |
LIU H, LI X G, HU L K, et al. Knowledge graph driven recommendation model of graph neural network [J]. Journal of Computer Applications, 2021, 41(7): 1865-1870. | |
7 | FAN W, MA Y, LI Q, et al. Graph neural networks for social recommendation [C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 417-426. |
8 | ZHANG J, LIU X, ZHOU X, et al. Leveraging graph neural networks for Point-of-Interest recommendations [J]. Neurocomputing, 2021, 462: 1-13. |
9 | ALBRECHT J P. How the GDPR will change the world [J]. European Data Protection Law Review, 2016, 2(3): 287-289. |
10 | TRELEAVEN P, SMIETANKA M, PITHADIA H. Federated learning: the pioneering distributed machine learning and privacy-preserving data technology [J]. Computer, 2022, 55(4): 20-29. |
11 | LUO S, XIAO Y, SONG L. Personalized federated recommendation via joint representation learning, user clustering, and model adaptation [C]// Proceedings of the 31st ACM International Conference on Information and Knowledge Management. New York: ACM, 2022: 4289-4293. |
12 | ZION E BEN, LERNER B. Identifying and predicting social lifestyles in people’s trajectories by neural networks [J]. EPJ Data Science, 2018, 7: No.45. |
13 | LIU Y, WEI W, SUN A, et al. Exploiting geographical neighborhood characteristics for location recommendation [C]// Proceedings of the 23rd ACM International Conference on Information and Knowledge Management. New York: ACM, 2014: 739-748. |
14 | YIN M, LIU Y, ZHOU X, et al. A tensor decomposition based collaborative filtering algorithm for time-aware POI recommendation in LBSN [J]. Multimedia Tools and Applications, 2021, 80(30): 36215-36235. |
15 | CHEN M, LI W Z, QIAN L, et al. Next POI recommendation based on location interest mining with recurrent neural networks [J]. Journal of Computer Science and Technology, 2020, 35(3): 603-616. |
16 | HUANG L, MA Y, WANG S, et al. An attention-based spatiotemporal LSTM network for next POI recommendation [J]. IEEE Transactions on Services Computing, 2021, 14(6): 1585-1597. |
17 | WU S, ZHANG Y, GAO C, et al. GARG: anonymous recommendation of point-of-interest in mobile networks by graph convolution network [J]. Data Science and Engineering, 2020, 5(4): 433-447. |
18 | LIU J, CHEN Y, HUANG X, et al. GNN-based long and short term preference modeling for next-location prediction [J]. Information Sciences, 2023, 629: 1-14. |
19 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. [2023-01-12]. . |
20 | KUANG L, TU S, ZHANG Y, et al. Providing privacy preserving in next POI recommendation for mobile edge computing [J]. Journal of Cloud Computing, 2020, 9: No.10. |
21 | MENG S, QI L, LI Q, et al. Privacy-preserving and sparsity-aware location-based prediction method for collaborative recommender systems [J]. Future Generation Computer Systems, 2019, 96: 324-335. |
22 | McMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data [C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2017: 1273-1282. |
23 | WU C, WU F, LYU L, et al. A federated graph neural network framework for privacy-preserving personalization [J]. Nature Communications, 2022, 13: No.3091. |
24 | DONG Q, LIU B, ZHANG X, et al. Sequential POI recommend based on personalized federated learning [J]. Neural Processing Letters, 2023, 55: 7351-7368. |
25 | LI Z, BILAL M, XU X, et al. Federated learning-based cross-enterprise recommendation with graph neural networks [J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 673-682. |
26 | DING X, LI G, YUAN L, et al. Efficient federated item similarity model for privacy-preserving recommendation [J]. Information Processing and Management, 2023, 60(5): No.103470. |
27 | BRIGGS C, FAN Z, ANDRAS P. Federated learning with hierarchical clustering of local updates to improve training on non-IID data [C]// Proceedings of the 2020 IEEE International Joint Conference on Neural Networks. Piscataway: IEEE, 2020: 1-9. |
28 | 温菊屏,胡小生,林冬梅,等.基于参考节点嵌入的图可达性查询[J].计算机应用, 2016, 36(7): 1998-2005. |
WEN J P, HU X S, LIN D M, et al. Graph reachability query based on reference node embedding [J]. Journal of Computer Applications, 2016, 36(7): 1998-2005. | |
29 | 胡军,许正康,刘立,等.融合多粒度社区信息的网络嵌入方法[J].计算机应用, 2022, 42(3): 663-670. |
HU J, XU Z K, LIU L, et al. Network embedding method based on multi-granularity community information [J]. Journal of Computer Applications, 2022, 42(3): 663-670. | |
30 | 富坤,高金辉,赵晓梦,等.融合全局结构信息的拓扑优化图卷积网络[J].计算机应用, 2022, 42(2): 357-364. |
FU K, GAO J H, ZHAO X M, et al. Topology optimization based graph convolutional network combining with global structural information [J]. Journal of Computer Applications, 2022, 42(2): 357-364. | |
31 | LIU Z, YANG L, FAN Z, et al. Federated social recommendation with graph neural network [J]. ACM Transactions on Intelligent Systems and Technology, 2022, 13(4): No.55. |
32 | 张国鹏,陈学斌,王豪石,等.面向本地差分隐私的K-Prototypes聚类方法[J].计算机应用, 2022, 42(12): 3813-3821. |
ZHANG G P, CHEN X B, WANG H S, et al. K-Prototypes clustering method for local differential privacy [J]. Journal of Computer Applications, 2022, 42(12): 3813-3821. | |
33 | ZHENG Y, XIE X, MA W Y GeoLife : a collaborative social networking service among user, location and trajectory [J]. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 2010, 33(2): 32-39. |
34 | 中国POI数据[DB/OL]. [2023-10-22]. . |
China POI data [DB/OL]. [2023-10-22]. . | |
35 | HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering [C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 173-182. |
36 | CHAI D, WANG L, CHEN K, et al. Secure federated matrix factorization [J]. IEEE Intelligent Systems, 2021, 36(5): 11-20. |
[1] | Yan YAN, Xingying QIAN, Pengbin YAN, Jie YANG. Federated learning-based statistical prediction and differential privacy protection method for location big data [J]. Journal of Computer Applications, 2025, 45(1): 127-135. |
[2] | Jianpeng HU, Lichen ZHANG. Deep spatio-temporal network model for multi-time step wind power prediction [J]. Journal of Computer Applications, 2025, 45(1): 98-105. |
[3] | Shufen ZHANG, Hongyang ZHANG, Zhiqiang REN, Xuebin CHEN. Survey of fairness in federated learning [J]. Journal of Computer Applications, 2025, 45(1): 1-14. |
[4] | Tingwei CHEN, Jiacheng ZHANG, Junlu WANG. Random validation blockchain construction for federated learning [J]. Journal of Computer Applications, 2024, 44(9): 2770-2776. |
[5] | Hang YANG, Wanggen LI, Gensheng ZHANG, Zhige WANG, Xin KAI. Multi-layer information interactive fusion algorithm based on graph neural network for session-based recommendation [J]. Journal of Computer Applications, 2024, 44(9): 2719-2725. |
[6] | Zheyuan SHEN, Keke YANG, Jing LI. Personalized federated learning method based on dual stream neural network [J]. Journal of Computer Applications, 2024, 44(8): 2319-2325. |
[7] | Wei LUO, Jinquan LIU, Zheng ZHANG. Dual vertical federated learning framework incorporating secret sharing technology [J]. Journal of Computer Applications, 2024, 44(6): 1872-1879. |
[8] | Tianci KE, Jianhua LIU, Shuihua SUN, Zhixiong ZHENG, Zijie CAI. Aspect-level sentiment analysis model combining strong association dependency and concise syntax [J]. Journal of Computer Applications, 2024, 44(6): 1786-1795. |
[9] | Xuebin CHEN, Zhiqiang REN, Hongyang ZHANG. Review on security threats and defense measures in federated learning [J]. Journal of Computer Applications, 2024, 44(6): 1663-1672. |
[10] | Lei GUO, Zhen JIA, Tianrui LI. Relational and interactive graph attention network for aspect-level sentiment analysis [J]. Journal of Computer Applications, 2024, 44(3): 696-701. |
[11] | Dapeng XU, Xinmin HOU. Feature selection method for graph neural network based on network architecture design [J]. Journal of Computer Applications, 2024, 44(3): 663-670. |
[12] | Sunjie YU, Hui ZENG, Shiyu XIONG, Hongzhou SHI. Incentive mechanism for federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(2): 344-352. |
[13] | Zucuan ZHANG, Xuebin CHEN, Rui GAO, Yuanhuai ZOU. Federated learning client selection method based on label classification [J]. Journal of Computer Applications, 2024, 44(12): 3759-3765. |
[14] | Jie WU, Xuezhong QIAN, Wei SONG. Personalized federated learning based on similarity clustering and regularization [J]. Journal of Computer Applications, 2024, 44(11): 3345-3353. |
[15] | Xuebin CHEN, Changsheng QU. Overview of backdoor attacks and defense in federated learning [J]. Journal of Computer Applications, 2024, 44(11): 3459-3469. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||