Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (1): 106-114.DOI: 10.11772/j.issn.1001-9081.2024010126
• Data science and technology • Previous Articles Next Articles
Xiaosheng YU1,2(), Zhixin WANG1,2
Received:
2024-02-05
Revised:
2024-03-25
Accepted:
2024-03-25
Online:
2024-05-09
Published:
2025-01-10
Contact:
Xiaosheng YU, Zhixin WANG
About author:
WANG Zhixin, born in 1999, M. S. candidate. His research interests include recommendation algorithm, data mining.
Supported by:
通讯作者:
余肖生,王智鑫
作者简介:
余肖生(1973—),男,湖北监利人,副教授,博士,CCF会员,主要研究方向:自然语言处理、数据挖掘; yuxiaosheng_2005@163.com
基金资助:
CLC Number:
Xiaosheng YU, Zhixin WANG. Sequential recommendation model based on multi-level graph contrastive learning[J]. Journal of Computer Applications, 2025, 45(1): 106-114.
余肖生, 王智鑫. 基于多层次图对比学习的序列推荐模型[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 106-114.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024010126
数据集 | 用户数 | 项目数 | 交互次数 | 用户平均长度 | 稠密度/% |
---|---|---|---|---|---|
Sports | 35 598 | 18 357 | 296 337 | 8.3 | 99.95 |
Beauty | 22 363 | 12 101 | 198 502 | 8.8 | 99.93 |
Toys | 19 412 | 11 924 | 167 597 | 8.6 | 99.93 |
Tab. 1 Dataset information
数据集 | 用户数 | 项目数 | 交互次数 | 用户平均长度 | 稠密度/% |
---|---|---|---|---|---|
Sports | 35 598 | 18 357 | 296 337 | 8.3 | 99.95 |
Beauty | 22 363 | 12 101 | 198 502 | 8.8 | 99.93 |
Toys | 19 412 | 11 924 | 167 597 | 8.6 | 99.93 |
超参数 | 值 |
---|---|
Batch_size | 256 |
学习率Learning rate | 0.000 1 |
训练迭代次数Epoch | 200 |
权重衰减weight_decay BI-GGNN缩放范围scale | 0.000 01 15 |
序列推荐任务占比α | 0.9 |
嵌入层对比学习任务占比β | 0.03 |
节点层对比学习任务占比γ | 0.03 |
序列层对比学习任务占比δ | 0.04 |
BI-GGNN层数 | 3 |
BI-GGNN的丢弃率dropout | 0.3 |
嵌入维度大小 | 512 |
Tab. 2 Hyperparameter setting
超参数 | 值 |
---|---|
Batch_size | 256 |
学习率Learning rate | 0.000 1 |
训练迭代次数Epoch | 200 |
权重衰减weight_decay BI-GGNN缩放范围scale | 0.000 01 15 |
序列推荐任务占比α | 0.9 |
嵌入层对比学习任务占比β | 0.03 |
节点层对比学习任务占比γ | 0.03 |
序列层对比学习任务占比δ | 0.04 |
BI-GGNN层数 | 3 |
BI-GGNN的丢弃率dropout | 0.3 |
嵌入维度大小 | 512 |
数据集 | 评价指标 | 对比模型 | 本文模型 | 本文模型与对比模型 最优值的差异/% | ||||
---|---|---|---|---|---|---|---|---|
CL4SRec | CoSeRec | ICLRec | DuoRec | MCLRec | ||||
Sports | HR@5 | 0.023 1 | 0.025 6 | 0.029 0 | 0.032 8 | 0.035 3 | 7.6 | |
HR@10 | 0.036 9 | 0.040 2 | 0.043 7 | 0.050 1 | 0.051 0 | 1.8 | ||
HR@20 | 0.055 7 | 0.060 5 | 0.064 6 | 0.073 4 | 0.073 9 | 0.7 | ||
NDCG@5 | 0.014 6 | 0.017 0 | 0.019 1 | 0.020 4 | 0.024 6 | 20.6 | ||
NDCG@10 | 0.019 1 | 0.021 7 | 0.023 8 | 0.026 0 | 0.029 7 | 14.2 | ||
NDCG@20 | 0.023 8 | 0.026 8 | 0.029 1 | 0.031 9 | 0.035 5 | 11.3 | ||
Beauty | HR@5 | 0.040 1 | 0.046 6 | 0.050 0 | 0.058 1 | 0.061 4 | 5.7 | |
HR@10 | 0.064 2 | 0.069 9 | 0.074 4 | 0.087 1 | 0.087 6 | 0.6 | ||
HR@20 | 0.097 4 | 0.102 3 | 0.105 8 | 0.124 3 | 0.124 7 | 0.3 | ||
NDCG@5 | 0.026 8 | 0.030 9 | 0.032 6 | 0.035 2 | 0.044 6 | 26.7 | ||
NDCG@10 | 0.034 5 | 0.038 4 | 0.040 3 | 0.044 6 | 0.053 1 | 19.1 | ||
NDCG@20 | 0.042 8 | 0.046 5 | 0.048 3 | 0.053 9 | 0.061 4 | 13.9 | ||
Toys | HR@5 | 0.049 7 | 0.055 5 | 0.059 8 | 0.065 0 | 0.071 1 | 9.4 | |
HR@10 | 0.071 6 | 0.079 3 | 0.083 4 | 0.093 0 | 0.096 3 | 3.5 | ||
HR@20 | 0.093 5 | 0.108 2 | 0.113 8 | 0.126 2 | 0.128 3 | 1.7 | ||
NDCG@5 | 0.025 4 | 0.040 4 | 0.037 3 | 0.037 2 | 0.051 0 | 26.2 | ||
NDCG@10 | 0.032 1 | 0.045 4 | 0.048 0 | 0.044 3 | 0.059 1 | 23.1 | ||
NDCG@20 | 0.039 8 | 0.052 7 | 0.055 7 | 0.052 1 | 0.067 2 | 20.6 |
Tab. 3 Comparison experimental results on three datasets
数据集 | 评价指标 | 对比模型 | 本文模型 | 本文模型与对比模型 最优值的差异/% | ||||
---|---|---|---|---|---|---|---|---|
CL4SRec | CoSeRec | ICLRec | DuoRec | MCLRec | ||||
Sports | HR@5 | 0.023 1 | 0.025 6 | 0.029 0 | 0.032 8 | 0.035 3 | 7.6 | |
HR@10 | 0.036 9 | 0.040 2 | 0.043 7 | 0.050 1 | 0.051 0 | 1.8 | ||
HR@20 | 0.055 7 | 0.060 5 | 0.064 6 | 0.073 4 | 0.073 9 | 0.7 | ||
NDCG@5 | 0.014 6 | 0.017 0 | 0.019 1 | 0.020 4 | 0.024 6 | 20.6 | ||
NDCG@10 | 0.019 1 | 0.021 7 | 0.023 8 | 0.026 0 | 0.029 7 | 14.2 | ||
NDCG@20 | 0.023 8 | 0.026 8 | 0.029 1 | 0.031 9 | 0.035 5 | 11.3 | ||
Beauty | HR@5 | 0.040 1 | 0.046 6 | 0.050 0 | 0.058 1 | 0.061 4 | 5.7 | |
HR@10 | 0.064 2 | 0.069 9 | 0.074 4 | 0.087 1 | 0.087 6 | 0.6 | ||
HR@20 | 0.097 4 | 0.102 3 | 0.105 8 | 0.124 3 | 0.124 7 | 0.3 | ||
NDCG@5 | 0.026 8 | 0.030 9 | 0.032 6 | 0.035 2 | 0.044 6 | 26.7 | ||
NDCG@10 | 0.034 5 | 0.038 4 | 0.040 3 | 0.044 6 | 0.053 1 | 19.1 | ||
NDCG@20 | 0.042 8 | 0.046 5 | 0.048 3 | 0.053 9 | 0.061 4 | 13.9 | ||
Toys | HR@5 | 0.049 7 | 0.055 5 | 0.059 8 | 0.065 0 | 0.071 1 | 9.4 | |
HR@10 | 0.071 6 | 0.079 3 | 0.083 4 | 0.093 0 | 0.096 3 | 3.5 | ||
HR@20 | 0.093 5 | 0.108 2 | 0.113 8 | 0.126 2 | 0.128 3 | 1.7 | ||
NDCG@5 | 0.025 4 | 0.040 4 | 0.037 3 | 0.037 2 | 0.051 0 | 26.2 | ||
NDCG@10 | 0.032 1 | 0.045 4 | 0.048 0 | 0.044 3 | 0.059 1 | 23.1 | ||
NDCG@20 | 0.039 8 | 0.052 7 | 0.055 7 | 0.052 1 | 0.067 2 | 20.6 |
模型 | Sports | Beauty | Toys | |||
---|---|---|---|---|---|---|
HR@10 | NDCG@10 | HR@10 | NDCG@10 | HR@10 | NDCG@10 | |
MLGCL-SR | 0.051 0 | 0.029 7 | 0.087 6 | 0.053 1 | 0.096 3 | 0.059 1 |
MLGCL-SR-Res | 0.049 7 | 0.029 2 | 0.087 1 | 0.053 4 | 0.094 2 | 0.056 9 |
MLGCL-SR-Node | 0.049 1 | 0.028 6 | 0.086 0 | 0.052 6 | 0.094 9 | 0.057 5 |
MLGCL-SR-Seq | ||||||
MLGCL-SR-All | 0.047 6 | 0.027 4 | 0.082 1 | 0.050 4 | 0.092 5 | 0.056 7 |
Tab. 4 Ablation experimental results
模型 | Sports | Beauty | Toys | |||
---|---|---|---|---|---|---|
HR@10 | NDCG@10 | HR@10 | NDCG@10 | HR@10 | NDCG@10 | |
MLGCL-SR | 0.051 0 | 0.029 7 | 0.087 6 | 0.053 1 | 0.096 3 | 0.059 1 |
MLGCL-SR-Res | 0.049 7 | 0.029 2 | 0.087 1 | 0.053 4 | 0.094 2 | 0.056 9 |
MLGCL-SR-Node | 0.049 1 | 0.028 6 | 0.086 0 | 0.052 6 | 0.094 9 | 0.057 5 |
MLGCL-SR-Seq | ||||||
MLGCL-SR-All | 0.047 6 | 0.027 4 | 0.082 1 | 0.050 4 | 0.092 5 | 0.056 7 |
1 | WANG S, HU L, WANG Y, et al. Sequential recommender systems: challenges, progress and prospects [C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 6332-6338. |
2 | HERLOCKER J L, KONSTAN J A, BORCHERS A, et al. An algorithmic framework for performing collaborative filtering [C]// Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2017: 230-237. |
3 | HE R, FANG C, WANG Z, et al. Vista: a visually, socially, and temporally-aware model for artistic recommendation [C]// Proceedings of the 10th ACM Conference on Recommender Systems. New York: ACM, 2016: 309-316. |
4 | 杨航,李汪根,张根生,等. 基于图神经网络的多层信息交互融合算法用于会话推荐[J]. 计算机应用, 2024, 44(9):2719-2725. |
YANG H, LI W G, ZHANG G S, et al. Multi-layer information interactive fusion algorithm based on graph neural network for session-based recommendation[J]. Journal of Computer Applications, 2024, 44(9):2719-2725. | |
5 | WU S, TANG Y, ZHU Y, et al. Session-based recommendation with graph neural networks [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 346-353. |
6 | CHEN Q, ZHAO H, LI W, et al. Behavior sequence Transformer for e-commerce recommendation in Alibaba [C]// Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data. New York: ACM, 2019: No.12. |
7 | LIN W, ZHAO X, WANG Y, et al. AutoDenoise: automatic data instance denoising for recommendations [C]// Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 1003-1011. |
8 | XIE X, SUN F, LIU Z, et al. Contrastive learning for sequential recommendation [C]// Proceedings of the IEEE 38th International Conference on Data Engineering. Piscataway: IEEE, 2022: 1259-1273. |
9 | WU J, WANG X, FENG F, et al. Self-supervised graph learning for recommendation [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 726-735. |
10 | SHAO W, CHEN X, ZHAO J, et al. Sequential recommendation with adaptive preference disentanglement[EB/OL]. [2023-12-06].. |
11 | RAC M, KOMPAN M, BIELIKOVA M. Session-based k-NNs with semantic suggestions for next-item prediction[EB/OL]. [2023-12-16].. |
12 | YUAN F, HE X, JIANG H, et al. Future data helps training: modeling future contexts for session-based recommendation [C]// Proceedings of the Web Conference 2020. New York: ACM, 2020: 303-313. |
13 | VASSØY B, RUOCCO M, DE SOUZA DA SILVA E, et al. Time is of the essence: a joint hierarchical RNN and point process model for time and item predictions [C]// Proceedings of the 12th ACM International Conference on Web Search and Data Mining. New York: ACM, 2019: 591-599. |
14 | CHEN X, XU H, ZHANG Y, et al. Sequential recommendation with user memory networks [C]// Proceedings of the 1th ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 108-116. |
15 | WU J, OU Z, SONG M. Session-based recommendation with context-aware attention network [C]// Proceedings of the 7th International Conference on Information Technology: IoT and Smart City. New York: ACM, 2019: 141-146. |
16 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. |
17 | BUDZIANOWSKI P, VULIĆ I. Hello, it's GPT-2 - how can I help you? towards the use of pretrained language models for task-oriented dialogue systems [C]// Proceedings of the 3rd Workshop on Neural Generation and Translation. Stroudsburg: ACL, 2019: 15-22. |
18 | QIU X, SUN T, XU Y, et al. Pre-trained models for natural language processing: a survey[J]. SCIENCE CHINA Technological Sciences, 2020, 63(10): 1872-1897. |
19 | JAISWAL A, BABU A R, ZADEH M Z, et al. A survey on contrastive self-supervised learning[J]. Technologies, 2021, 9(1): No.2. |
20 | LIU Z, CHEN Y, LI J, et al. Contrastive self-supervised sequential recommendation with robust augmentation[EB/OL]. [2024-08-14].. |
21 | QIU R, HUANG Z, YIN H, et al. Contrastive learning for representation degeneration problem in sequential recommendation [C]// Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 813-823. |
22 | QIN X, YUAN H, ZHAO P, et al. Meta-optimized contrastive learning for sequential recommendation [C]// Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 89-98. |
23 | WANG F, WANG Y, LI D, et al. CL4CTR: a contrastive learning framework for CTR prediction [C]// Proceedings of the 16th ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 805-813. |
24 | WANG Z, LIU H, WEI W, et al. Multi-level contrastive learning framework for sequential recommendation [C]// Proceedings of the 31st ACM International Conference on Information and Knowledge Management. New York: ACM, 2022: 2098-2107. |
25 | WU F, ZHANG T, DE SOUZA A H, Jr, et al. Simplifying graph convolutional networks [C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 6861-6871. |
26 | CHEN L, WU L, HONG R, et al. Revisiting graph based collaborative filtering: a linear residual graph convolutional network approach [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 27-34. |
27 | BRODY S, ALON U, YAHAV E. How attentive are graph attention networks?[EB/OL]. [2024-01-31].. |
28 | WANG Z, WEI W, CONG G, et al. Global context enhanced graph neural networks for session-based recommendation [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 169-178. |
29 | BECK D, HAFFARI G, COHN T. Graph-to-sequence learning using gated graph neural networks [C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2018: 273-283. |
30 | MIN E, RONG Y, XU T, et al. Neighbour interaction based click-through rate prediction via graph-masked transformer [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 353-362. |
31 | YOU Y, CHEN T, SUI Y, et al. Graph contrastive learning with augmentations [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 5812-5823. |
32 | QIU J, CHEN Q, DONG Y, et al. GCC: graph contrastive coding for graph neural network pre-training[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 1150-1160. |
33 | LI B, HOU Y, CHE W. Data augmentation approaches in natural language processing: a survey[J]. AI Open, 2022, 3: 71-90. |
34 | LINDEN G, SMITH B, YORK J. Amazon.com recommendations: item-to-item collaborative filtering[J]. IEEE Internet Computing, 2003, 7(1): 76-80. |
35 | HAVASI M, JENATTON R, FORT S, et al. Training independent subnetworks for robust prediction[EB/OL]. [2024-08-04].. |
36 | HE K, FAN H, WU Y, et al. Momentum contrast for unsupervised visual representation learning [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9729-9738. |
37 | WANG F, LIU H. Understanding the behaviour of contrastive loss [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2495-2504. |
38 | CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 1597-1607. |
39 | CHEN Y, LIU Z, LI J, et al. Intent contrastive learning for sequential recommendation [C]// Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2172-2182. |
40 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. [2024-01-30].. |
[1] | Xingyao YANG, Yu CHEN, Jiong YU, Zulian ZHANG, Jiaying CHEN, Dongxiao WANG. Recommendation model combining self-features and contrastive learning [J]. Journal of Computer Applications, 2024, 44(9): 2704-2710. |
[2] | Tingjie TANG, Jiajin HUANG, Jin QIN, Hui LU. Session-based recommendation based on graph co-occurrence enhanced multi-layer perceptron [J]. Journal of Computer Applications, 2024, 44(8): 2357-2364. |
[3] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[4] | Xiaoxia JIANG, Ruizhang HUANG, Ruina BAI, Lina REN, Yanping CHEN. Deep event clustering method based on event representation and contrastive learning [J]. Journal of Computer Applications, 2024, 44(6): 1734-1742. |
[5] | Jiong WANG, Taotao TANG, Caiyan JIA. PAGCL: positive augmentation graph contrastive learning recommendation method without negative sampling [J]. Journal of Computer Applications, 2024, 44(5): 1485-1492. |
[6] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
[7] | Weichao DANG, Lei ZHANG, Gaimei GAO, Chunxia LIU. Weakly supervised action localization method with snippet contrastive learning [J]. Journal of Computer Applications, 2024, 44(2): 548-555. |
[8] | Zhiwen JING, Yujia ZHANG, Boting SUN, Hao GUO. Two-stage recommendation algorithm of Siamese graph convolutional neural network [J]. Journal of Computer Applications, 2024, 44(2): 469-476. |
[9] | Beijing ZHOU, Hairong WANG, Yimeng WANG, Lisi ZHANG, He MA. Recommendation method using knowledge graph embedding propagation [J]. Journal of Computer Applications, 2024, 44(10): 3252-3259. |
[10] | Yunhua ZHU, Bing KONG, Lihua ZHOU, Hongmei CHEN, Chongming BAO. Multi-view clustering network guided by graph contrastive learning [J]. Journal of Computer Applications, 2024, 44(10): 3267-3274. |
[11] | Xingyao YANG, Hongtao SHEN, Zulian ZHANG, Jiong YU, Jiaying CHEN, Dongxiao WANG. Sequential recommendation based on hierarchical filter and temporal convolution enhanced self-attention network [J]. Journal of Computer Applications, 2024, 44(10): 3090-3096. |
[12] | Wei TONG, Liyang HE, Rui LI, Wei HUANG, Zhenya HUANG, Qi LIU. Efficient similar exercise retrieval model based on unsupervised semantic hashing [J]. Journal of Computer Applications, 2024, 44(1): 206-216. |
[13] | Yirui HUANG, Junwei LUO, Jingqiang CHEN. Multi-modal dialog reply retrieval based on contrast learning and GIF tag [J]. Journal of Computer Applications, 2024, 44(1): 32-38. |
[14] | Kunpei YE, Xi XIONG, Zhe DING. Recruitment recommendation model based on field fusion and time weight [J]. Journal of Computer Applications, 2023, 43(7): 2133-2139. |
[15] | Jingsheng LEI, Kaijun LA, Shengying YANG, Yi WU. Joint entity and relation extraction based on contextual semantic enhancement [J]. Journal of Computer Applications, 2023, 43(5): 1438-1444. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||