Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (1): 206-216.DOI: 10.11772/j.issn.1001-9081.2023091260
• Data science and technology • Previous Articles
Wei TONG1, Liyang HE2,3, Rui LI2,3, Wei HUANG1, Zhenya HUANG2,3, Qi LIU2,3()
Received:
2023-09-14
Revised:
2023-10-14
Accepted:
2023-10-24
Online:
2023-12-08
Published:
2024-01-10
Contact:
Qi LIU
About author:
TONG Wei, born in 1984, Ph. D. His research interests include education data mining, natural language processing.Supported by:
佟威1, 何理扬2,3, 李锐2,3, 黄威1, 黄振亚2,3, 刘淇2,3()
通讯作者:
刘淇
作者简介:
佟威(1984—),男,河北沧州人,博士,主要研究方向:教育数据挖掘、自然语言处理;基金资助:
CLC Number:
Wei TONG, Liyang HE, Rui LI, Wei HUANG, Zhenya HUANG, Qi LIU. Efficient similar exercise retrieval model based on unsupervised semantic hashing[J]. Journal of Computer Applications, 2024, 44(1): 206-216.
佟威, 何理扬, 李锐, 黄威, 黄振亚, 刘淇. 基于无监督语义哈希的高效相似题检索模型[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 206-216.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023091260
名称 | 含义 | 名称 | 含义 |
---|---|---|---|
温度超参数 | 一个训练迷你批次集合 | ||
第 | 哈希码 | ||
第 | 搜索返回的相关试题数量 | ||
全局表征 |
Tab. 1 Symbols and their meanings
名称 | 含义 | 名称 | 含义 |
---|---|---|---|
温度超参数 | 一个训练迷你批次集合 | ||
第 | 哈希码 | ||
第 | 搜索返回的相关试题数量 | ||
全局表征 |
模型 | R@100 | R@200 | R@400 | MRR |
---|---|---|---|---|
SPH | 0.183 9 | 0.278 1 | 0.363 2 | 0.021 3 |
STH | 0.183 4 | 0.289 4 | 0.382 3 | 0.020 3 |
VDSH | 0.192 8 | 0.303 0 | 0.421 8 | 0.023 4 |
NASH | 0.192 2 | 0.314 0 | 0.432 2 | 0.027 8 |
NbrReg | 0.194 5 | 0.314 9 | 0.449 6 | 0.025 8 |
PairRec | 0.204 1 | 0.321 0 | 0.453 1 | 0.030 9 |
WISH | 0.234 0 | 0.375 4 | 0.498 5 | 0.035 4 |
DHIM | 0.264 5 | 0.443 4 | 0.534 5 | 0.038 0 |
BM25 | 0.299 2 | 0.361 1 | 0.424 4 | 0.045 7 |
Doc2Vec | 0.231 1 | 0.332 5 | 0.448 8 | 0.029 9 |
VSM | 0.280 5 | 0.382 9 | 0.453 1 | 0.039 1 |
BERT | 0.462 4 | 0.586 9 | 0.737 2 | 0.097 1 |
QuesNet | 0.327 0 | 0.464 9 | 0.633 4 | 0.073 1 |
QuesCo | 0.5639 | 0.6963 | 0.8222 | 0.1747 |
USH-SER |
Tab. 2 Result comparison of R@K and MRR among different models on MATH dataset
模型 | R@100 | R@200 | R@400 | MRR |
---|---|---|---|---|
SPH | 0.183 9 | 0.278 1 | 0.363 2 | 0.021 3 |
STH | 0.183 4 | 0.289 4 | 0.382 3 | 0.020 3 |
VDSH | 0.192 8 | 0.303 0 | 0.421 8 | 0.023 4 |
NASH | 0.192 2 | 0.314 0 | 0.432 2 | 0.027 8 |
NbrReg | 0.194 5 | 0.314 9 | 0.449 6 | 0.025 8 |
PairRec | 0.204 1 | 0.321 0 | 0.453 1 | 0.030 9 |
WISH | 0.234 0 | 0.375 4 | 0.498 5 | 0.035 4 |
DHIM | 0.264 5 | 0.443 4 | 0.534 5 | 0.038 0 |
BM25 | 0.299 2 | 0.361 1 | 0.424 4 | 0.045 7 |
Doc2Vec | 0.231 1 | 0.332 5 | 0.448 8 | 0.029 9 |
VSM | 0.280 5 | 0.382 9 | 0.453 1 | 0.039 1 |
BERT | 0.462 4 | 0.586 9 | 0.737 2 | 0.097 1 |
QuesNet | 0.327 0 | 0.464 9 | 0.633 4 | 0.073 1 |
QuesCo | 0.5639 | 0.6963 | 0.8222 | 0.1747 |
USH-SER |
模型 | R@100 | R@200 | R@400 |
---|---|---|---|
SPH | 0.010 8 | 0.018 5 | 0.029 4 |
STH | 0.011 8 | 0.019 8 | 0.031 8 |
VDSH | 0.018 3 | 0.029 8 | 0.046 3 |
NASH | 0.017 9 | 0.029 0 | 0.045 1 |
NbrReg | 0.019 2 | 0.031 1 | 0.049 3 |
PairRec | 0.020 6 | 0.033 2 | 0.051 6 |
WISH DHIM | 0.021 4 | 0.034 4 | 0.054 5 |
USH-SER | 0.0332 | 0.0535 | 0.0850 |
Tab. 3 Result comparison of R@K among different models on HISTORY dataset
模型 | R@100 | R@200 | R@400 |
---|---|---|---|
SPH | 0.010 8 | 0.018 5 | 0.029 4 |
STH | 0.011 8 | 0.019 8 | 0.031 8 |
VDSH | 0.018 3 | 0.029 8 | 0.046 3 |
NASH | 0.017 9 | 0.029 0 | 0.045 1 |
NbrReg | 0.019 2 | 0.031 1 | 0.049 3 |
PairRec | 0.020 6 | 0.033 2 | 0.051 6 |
WISH DHIM | 0.021 4 | 0.034 4 | 0.054 5 |
USH-SER | 0.0332 | 0.0535 | 0.0850 |
模型 | 不同哈希码长度下的 | |||
---|---|---|---|---|
8 b | 16 b | 32 b | 64 b | |
SPH | 0.132 2 | 0.161 1 | 0.173 1 | 0.189 9 |
STH | 0.143 2 | 0.168 0 | 0.189 3 | 0.204 1 |
VDSH | 0.258 8 | 0.274 1 | 0.294 3 | 0.328 4 |
NASH | 0.257 1 | 0.264 3 | 0.286 4 | 0.301 9 |
NbrReg | 0.278 5 | 0.289 1 | 0.308 0 | 0.342 1 |
PairRec | 0.301 3 | 0.318 3 | 0.330 3 | 0.343 4 |
WISH DHIM | 0.313 3 | 0.322 2 | 0.343 0 | 0.362 1 |
USH-SER | 0.4523 | 0.4918 | 0.5323 | 0.5512 |
Tab. 4 Comparison of Precision@100 among different models on HISTORY dataset
模型 | 不同哈希码长度下的 | |||
---|---|---|---|---|
8 b | 16 b | 32 b | 64 b | |
SPH | 0.132 2 | 0.161 1 | 0.173 1 | 0.189 9 |
STH | 0.143 2 | 0.168 0 | 0.189 3 | 0.204 1 |
VDSH | 0.258 8 | 0.274 1 | 0.294 3 | 0.328 4 |
NASH | 0.257 1 | 0.264 3 | 0.286 4 | 0.301 9 |
NbrReg | 0.278 5 | 0.289 1 | 0.308 0 | 0.342 1 |
PairRec | 0.301 3 | 0.318 3 | 0.330 3 | 0.343 4 |
WISH DHIM | 0.313 3 | 0.322 2 | 0.343 0 | 0.362 1 |
USH-SER | 0.4523 | 0.4918 | 0.5323 | 0.5512 |
模块 | 含义 |
---|---|
加入最大化局部表征与全局表征的目标 | |
加入文本的自注意力提取模块 | |
加入试题图片 | |
加入时间感知的激活函数 | |
加入最大化汉明空间利用率目标 |
Tab. 5 Five components of ablation study
模块 | 含义 |
---|---|
加入最大化局部表征与全局表征的目标 | |
加入文本的自注意力提取模块 | |
加入试题图片 | |
加入时间感知的激活函数 | |
加入最大化汉明空间利用率目标 |
模型 | MATH | HOSTORY |
---|---|---|
USH-SER w/o | 0.725 3 | 0.080 1 |
USH-SER w/o | 0.729 9 | 0.081 4 |
USH-SER w/o | 0.747 2 | |
USH-SER w/o | 0.083 2 | |
USH-SER w/o | 0.742 1 | 0.082 4 |
USH-SER | 0.7694 | 0.0850 |
Tab. 6 Result comparison of ablation study on different datasets
模型 | MATH | HOSTORY |
---|---|---|
USH-SER w/o | 0.725 3 | 0.080 1 |
USH-SER w/o | 0.729 9 | 0.081 4 |
USH-SER w/o | 0.747 2 | |
USH-SER w/o | 0.083 2 | |
USH-SER w/o | 0.742 1 | 0.082 4 |
USH-SER | 0.7694 | 0.0850 |
1 | THAI-NGHE N, SCHMIDT-THIEME L. Multi-relational factorization models for student modeling in intelligent tutoring systems [C]// Proceedings of the 2015 7th International Conference on Knowledge and Systems Engineering. Piscataway: IEEE, 2015: 61-66. 10.1109/kse.2015.9 |
2 | WU R, LIU Q, LIU Y, et al. Cognitive modelling for predicting examinee performance [C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 1017-1024. |
3 | JIANG L, WANG P, CHENG K, et al. EduHawkes: A neural hawkes process approach for online study behavior modeling [C]// Proceedings of the 2021 SIAM International Conference on Data Mining. Philadelphia: SIAM, 2021: 567-575. 10.1137/1.9781611976700.64 |
4 | HAGE H, AÏMEUR E. Exam question recommender system [C]// Proceedings of the 2005 Conference on Artificial Intelligence in Education: Supporting Learning through Intelligent and Socially Informed Technology. [S.l.]: IOS Press, 2005: 249-257. |
5 | JIANG L, WANG Y, XIE S, et al. Which courses to choose? Recommending courses to groups of students in online tutoring platforms [J]. Applied Intelligence, 2023, 53: 11727-11736. 10.1007/s10489-022-03993-4 |
6 | LIU J, HUANG Z, ZHAI C, et al. Learning by applying: A general framework for mathematical reasoning via enhancing explicit knowledge learning [C]// Proceedings of the 35th Conference on Innovative Applications of Artificial Intelligence. Palo Alto: AAAI Press, 2023: 4497-4506. 10.1609/aaai.v37i4.25571 |
7 | LIN X, HUANG Z, ZHAO H, et al. Learning relation-enhanced hierarchical solver for math word problems [J]. IEEE Transactions on Neural Networks and Learning Systems (Early Access), 2023: 1-15. 10.1109/tnnls.2023.3272114 |
8 | PELÁNEK R. Measuring similarity of educational items: An overview [J]. IEEE Transactions on Learning Technologies, 2020, 13(2): 354-366. 10.1109/tlt.2019.2896086 |
9 | LIU Q, HUANG Z, HUANG Z, et al. Finding similar exercises in online education systems [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Piscataway: IEEE, 2018: 1821-1830. 10.1145/3219819.3219960 |
10 | HAGE H, AIMERU E. ICE: A system for identification of conflicts in exams [C]// Proceedings of the 2006 IEEE International Conference on Computer Systems and Applications. Piscataway: IEEE, 2006: 980-987. 10.1109/aiccsa.2006.205207 |
11 | WILLIAMS A E, AGUILAR-ROCA N M, TSAI M, et al. Assessment of learning gains associated with independent exam analysis in introductory biology [J]. CBE Life Sciences Education, 2011, 10: 346-356. 10.1187/cbe.11-03-0025 |
12 | YIN Y, LIU Q, HUANG Z, et al. QuesNet: A unified representation for heterogeneous test questions [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 1328-1336. 10.1145/3292500.3330900 |
13 | NING Y, HUANG Z, LIN X, et al. Towards a holistic understanding of mathematical questions with contrastive pre-training [C]// Proceedings of the 35th Conference on Innovative Applications of Artificial Intelligence. Palo Alto: AAAI Press, 2023: 13409-13418. 10.1609/aaai.v37i11.26573 |
14 | LUO X, WANG H, WU D, et al. A survey on deep hashing methods [J]. ACM Transactions on Knowledge Discovery from Data, 2023, 17(1): 1-50. 10.1145/3532624 |
15 | LIN K, LU J, CHEN C-S, et al. Learning compact binary descriptors with unsupervised deep neural networks [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1183-1192. 10.1109/cvpr.2016.133 |
16 | CHENG M, JING L, NG M K. Robust unsupervised cross-modal hashing for multimedia retrieval [J]. ACM Transactions on Information Systems, 2020, 38(3): 1-25. 10.1145/3389547 |
17 | HE L, HUANG Z, CHEN E, et al. An efficient and robust semantic hashing framework for similar text search [J]. ACM Transactions on Information Systems, 2023, 41(4): 1-31. |
18 | 王永欣,田洁茹,陈振铎,等.基于标记增强的离散跨模态哈希方法[J].软件学报, 2023, 34(7): 3438-3450. |
WANG Y X, TIAN J R, CHEN Z D, et al. Label enhancement based discrete cross-modal hashing method [J]. Journal of Software, 2023, 34(7): 3438-3450. | |
19 | NOROUZI M, PUNJANI A, FLEET D J. Fast search in Hamming space with multi-index hashing [C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 3108-3115. 10.1109/cvpr.2012.6248043 |
20 | CHAIDAROON S, FANG Y. Variational deep semantic hashing for text documents [C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2017: 75-84. 10.1145/3077136.3080816 |
21 | SHEN D, SU Q, CHANFUWA P, et al. NASH: toward end-to-end neural architecture for generative semantic hashing [C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2018: 2041-2050. 10.18653/v1/p18-1190 |
22 | YU J, LI D, HOU J, et al. Similarity measure of test questions based on ontology and VSM [J]. The Open Automation and Control Systems Journal, 2014, 6(1): 262-276. 10.2174/1874444301406010262 |
23 | PENG S, YUAN K, GAO L, et al. MathBERT: A pre-trained model for mathematical formula understanding [EB/OL]. (2021-05-02) [2023-10-14]. . |
24 | HUANG Z, LIN X, WANG H, et al. DisenQNet: Disentangled representation learning for educational questions [C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 696-704. 10.1145/3447548.3467347 |
25 | 李长升,闵齐星,成雨蓉,等.捕获局部语义结构和实例辨别的无监督哈希[J].软件学报, 2021, 32(3): 742-752. |
LI C S, MIN Q X, CHENG Y R, et al. Local semantic structure captured and instance discriminated by unsupervised hashing [J]. Journal of Software, 2021, 32(3): 742-752. | |
26 | 王亚芳,刘东升,侯敏.基于图像相似度检测代码克隆[J].计算机应用, 2019, 39(7): 2074-2080. |
WANG Y F, LIU D S, HOU M. Clone code detection based on image similarity [J]. Journal of Computer Applications, 2019, 39(7): 2074-2080. | |
27 | 廖列法,李志明,张赛赛.基于深度残差网络的迭代量化哈希图像检索方法[J].计算机应用, 2022, 42(9): 2845-2852. |
LIAO L F, LI Z M, ZHANG S S. Image retrieval method based on deep residual network and iterative quantization hashing [J]. Journal of Computer Applications, 2022, 42(9): 2845-2852. | |
28 | 谭钰,王小琴,蓝如师,等.基于判别性矩阵分解的多标签跨模态哈希检索[J].计算机应用, 2023, 43(5): 1349-1354. |
TAN Y, WANG X Q, LAN R S, et al. Multi-label cross-modal hashing retrieval based on discriminative matrix factorization [J]. Journal of Computer Applications, 2023, 43(5): 1349-1354. | |
29 | DATAR M, IMMORLICA N, INDVK P, et al. Locality-sensitive hashing scheme based on p-stable distributions [C]// Proceedings of the 20th Annual Symposium on Computational Geometry. New York: ACM, 2004: 253-262. 10.1145/997817.997857 |
30 | WEISS Y, TORRALBA A, FERGUS R. Spectral hashing [C]// Proceedings of the 21st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2008: 1753-1760. |
31 | ZHANG D, WANG J, CAI D, et al. Self-taught hashing for fast similarity search [C]// Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2010: 18-25. 10.1145/1835449.1835455 |
32 | J-P HEO, LEE Y, HE J, et al. Spherical hashing [C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2957-2964. 10.1109/cvpr.2012.6248024 |
33 | CHAIDAROON S, EBESU T, FANG Y. Deep semantic text hashing with weak supervision [C]// Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. New York: ACM, 2018: 1109-1112. 10.1145/3209978.3210090 |
34 | YIN P, LYU J, ZHANG S, et al. Understanding straight-through estimator in training activation quantized neural nets [EB/OL]. [2023-09-11]. . 10.1137/18m1166134 |
35 | HANSEN C, HANSEN C, SIMONSEN J G, et al. Unsupervised neural generative semantic hashing [C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 735-744. 10.1145/3331184.3331255 |
36 | HANSEN C, HANSEN C, SIMONSEN J G, et al. Unsupervised semantic hashing with pairwise reconstruction [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 2009-2012. 10.1145/3397271.3401220 |
37 | CHAIDAROON S, PARK D H, CHANG Y, et al. node2hash: Graph aware deep semantic text hashing [J]. Information Processing & Management, 2020, 57(6): No.102143. 10.1016/j.ipm.2019.102143 |
38 | YE F, MANOTUMRUKSA J, YILMAZ E. Unsupervised few-bits semantic hashing with implicit topics modeling [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 2566-2575. 10.18653/v1/2020.findings-emnlp.233 |
39 | OU Z, SU Q, YU J, et al. Refining BERT embeddings for document Hashing via mutual information maximization [EB/OL]. [2023-06-13]. . 10.18653/v1/2021.findings-emnlp.203 |
40 | CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 1597-1607. |
41 | HJELM R D, FEDOROV A, LAVOIE-MARCHILDON S, et al. Learning deep representations by mutual information estimation and maximization [EB/OL]. [2022-12-08]. . |
42 | KIM Y. Convolutional neural networks for sentence classification [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1746-1751. 10.3115/v1/d14-1181 |
43 | NOWOZIN S, CSEKE B, TOMIOKA R. f-GAN: Training generative neural samplers using variational divergence minimization [C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 271-279. |
44 | QIN H, GONG R, LIU X, et al. Forward and backward information retention for accurate binary neural networks[C]// Proceedings of the IEEE/CVF 2020 Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2250-2259. 10.1109/cvpr42600.2020.00232 |
45 | DOAN K D, REDDY C K. Efficient implicit unsupervised text hashing using adversarial autoencoder [C]// Proceedings of the 2020 Web Conference. New York: ACM, 2020: 684-694. 10.1145/3366423.3380150 |
46 | HE J, CHANG S-F, RADHAKRISHNAN R, et al. Compact hashing with joint optimization of search accuracy and time [C]// Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2011: 753-760. 10.1109/cvpr.2011.5995518 |
47 | ROBERTSON S, ZARAGOZA H, TAYLOR M. Simple BM25 extension to multiple weighted fields [C]// Proceedings of the 13th ACM International Conference on Information and Knowledge Management. New York: ACM, 2004: 42-49. 10.1145/1031171.1031181 |
48 | LE Q, MIKOLOV T. Distributed representations of sentences and documents [C]// Proceedings of the 31st International Conference on Machine Learning. New York: JMLR.org, 2014: 1188-1196. |
49 | TSINAKOS A, KAZANIDIS I. Identification of conflicting questions in the PARES system [J]. The International Review of Research in Open and Distributed Learning, 2012, 13(3): 297-313. 10.19173/irrodl.v13i3.1176 |
50 | DEVLIN J, CHANG M-W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 4171-4186. 10.18653/v1/n18-2 |
[1] | Chunlei WANG, Xiao WANG, Kai LIU. Multimodal knowledge graph representation learning: a review [J]. Journal of Computer Applications, 2024, 44(1): 1-15. |
[2] | Zelin XU, Min YANG, Meng CHEN. Point-of-interest category representation model with spatial and textual information [J]. Journal of Computer Applications, 2023, 43(8): 2456-2461. |
[3] | Kun ZHANG, Fengyu YANG, Fa ZHONG, Guangdong ZENG, Shijian ZHOU. Source code vulnerability detection based on hybrid code representation [J]. Journal of Computer Applications, 2023, 43(8): 2517-2526. |
[4] | Jinghong WANG, Zhixia ZHOU, Hui WANG, Haokang LI. Attribute network representation learning with dual auto-encoder [J]. Journal of Computer Applications, 2023, 43(8): 2338-2344. |
[5] | Jingsheng LEI, Kaijun LA, Shengying YANG, Yi WU. Joint entity and relation extraction based on contextual semantic enhancement [J]. Journal of Computer Applications, 2023, 43(5): 1438-1444. |
[6] | Rong GAO, Jiawei SHEN, Xiongkai SHAO, Xinyun WU. Instance segmentation algorithm based on Fastformer and self-supervised contrastive learning [J]. Journal of Computer Applications, 2023, 43(4): 1062-1070. |
[7] | Weichao DANG, Bingyang CHENG, Gaimei GAO, Chunxia LIU. Contrastive hypergraph transformer for session-based recommendation [J]. Journal of Computer Applications, 2023, 43(12): 3683-3688. |
[8] | Anqin ZHANG, Xiaohui WANG. Power battery safety warning based on time series anomaly detection [J]. Journal of Computer Applications, 2023, 43(12): 3799-3805. |
[9] | Mingyue WU, Dong ZHOU, Wenyu ZHAO, Wei QU. Sentence embedding optimization based on manifold learning [J]. Journal of Computer Applications, 2023, 43(10): 3062-3069. |
[10] | Yizhen BI, Huan MA, Changqing ZHANG. Dynamic evaluation method for benefit of modality augmentation [J]. Journal of Computer Applications, 2023, 43(10): 3099-3106. |
[11] | Kun FU, Yuhan HAO, Minglei SUN, Yinghua LIU. Network representation learning based on autoencoder with optimized graph structure [J]. Journal of Computer Applications, 2023, 43(10): 3054-3061. |
[12] | Hangyuan DU, Sicong HAO, Wenjian WANG. Semi-supervised representation learning method combining graph auto-encoder and clustering [J]. Journal of Computer Applications, 2022, 42(9): 2643-2651. |
[13] | Le ZHOU, Tingting DAI, Chun LI, Jun XIE, Boce CHU, Feng LI, Junyi ZHANG, Qiao LIU. Network representation learning model based on node attribute bipartite graph [J]. Journal of Computer Applications, 2022, 42(8): 2311-2318. |
[14] | Huanliang SUN, Cheng PENG, Junling LIU, Jingke XU. Community structure representation learning for "15-minute living circle" [J]. Journal of Computer Applications, 2022, 42(6): 1782-1788. |
[15] | Tengyue HAN, Shaozhang NIU, Wen ZHANG. Multimodal sequential recommendation algorithm based on contrastive learning [J]. Journal of Computer Applications, 2022, 42(6): 1683-1688. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||