Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (5): 1338-1347.DOI: 10.11772/j.issn.1001-9081.2024020209
Special Issue: 综述; 进化计算专题(2024年第5期“进化计算专题”导读,全文已上线)
• Special issue on evolutionary calculation • Previous Articles Next Articles
Yue WU1, Hangqi DING1, Hao HE1, Shunjie BI1, Jun JIANG1, Maoguo GONG2(), Qiguang MIAO1, Wenping MA3
Received:
2024-03-04
Revised:
2024-04-02
Accepted:
2024-04-03
Online:
2024-04-26
Published:
2024-05-10
Contact:
Maoguo GONG
About author:
WU Yue, born in 1988, Ph. D., associate professor. His research interests include artificial intelligence, 3D vision.Supported by:
武越1, 丁航奇1, 何昊1, 毕顺杰1, 江君1, 公茂果2(), 苗启广1, 马文萍3
通讯作者:
公茂果
作者简介:
武越(1988—),男,陕西西安人,副教授,博士,CCF高级会员,主要研究方向:人工智能、三维视觉基金资助:
CLC Number:
Yue WU, Hangqi DING, Hao HE, Shunjie BI, Jun JIANG, Maoguo GONG, Qiguang MIAO, Wenping MA. Research review of multitasking optimization algorithms and applications[J]. Journal of Computer Applications, 2024, 44(5): 1338-1347.
武越, 丁航奇, 何昊, 毕顺杰, 江君, 公茂果, 苗启广, 马文萍. 多任务优化算法及应用研究综述[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1338-1347.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024020209
特点 | 应用 | 创新点 | 参考文献 |
---|---|---|---|
直接对具有 相似属性的 任务分组 | 车辆路径规划 | 同时解决多个相似的车辆路径问题或者同时解决车辆路径问题和其他规划问题 | [ |
无线传感器网络 | 直接解决单跳传感器网络和多跳传感器网络中继节点选择问题 | [ | |
云计算服务 | 同时解决业务组合问题,满足客户需求 | [ | |
车辆结构设计 | 通过进化多任务解决不同类型的车的相似之处 | [ | |
问题具有 相似的决策 变量或结构 | 系统级封装 | 直接优化4个具有潜在假定相关性的任务的包装设计变量 | [ |
图像分类 | 在任务间相关进化中,通过构造发现算法自动提取不同领域的特征 | [ | |
强化学习 | 同时优化多个网络模型来处理每个任务,使用部分共享的网络参数 | [ | |
动态柔性车间调度 | 在不同调度任务之间共享有用的知识,构建任务模型 | [ | |
进化多任务 转换两阶段 问题 | 复合材料制造 | 将目标制造问题转化为两级优化,并对两级并行优化 | [ |
模糊系统控制 | 同时优化模糊系统的两级问题,或采用多任务设置的方法处理具有不同特征的模糊系统 | [ | |
软件测试生成 | 将生成问题转化为分支覆盖问题,并将基于两级存档的方法转化为基于进化多任务的多目标优化 | [ | |
点云配准 | 通过进化多任务辅助解空间知识转移,实现点云配准 | [ | |
简单任务 有助于 复杂任务 | 双极控制机设计 | 利用完成简单任务的经验来协助完成较困难的任务 | [ |
布尔极性问题 | 解决原始奇偶校验问题及其小规模变体 | [ | |
时间序列预测 | 将拟合时间序列数据视为符号回归,且并行发展多个符号回归 | [ |
Tab.1 A review of practical applications of evolutionary multitasking
特点 | 应用 | 创新点 | 参考文献 |
---|---|---|---|
直接对具有 相似属性的 任务分组 | 车辆路径规划 | 同时解决多个相似的车辆路径问题或者同时解决车辆路径问题和其他规划问题 | [ |
无线传感器网络 | 直接解决单跳传感器网络和多跳传感器网络中继节点选择问题 | [ | |
云计算服务 | 同时解决业务组合问题,满足客户需求 | [ | |
车辆结构设计 | 通过进化多任务解决不同类型的车的相似之处 | [ | |
问题具有 相似的决策 变量或结构 | 系统级封装 | 直接优化4个具有潜在假定相关性的任务的包装设计变量 | [ |
图像分类 | 在任务间相关进化中,通过构造发现算法自动提取不同领域的特征 | [ | |
强化学习 | 同时优化多个网络模型来处理每个任务,使用部分共享的网络参数 | [ | |
动态柔性车间调度 | 在不同调度任务之间共享有用的知识,构建任务模型 | [ | |
进化多任务 转换两阶段 问题 | 复合材料制造 | 将目标制造问题转化为两级优化,并对两级并行优化 | [ |
模糊系统控制 | 同时优化模糊系统的两级问题,或采用多任务设置的方法处理具有不同特征的模糊系统 | [ | |
软件测试生成 | 将生成问题转化为分支覆盖问题,并将基于两级存档的方法转化为基于进化多任务的多目标优化 | [ | |
点云配准 | 通过进化多任务辅助解空间知识转移,实现点云配准 | [ | |
简单任务 有助于 复杂任务 | 双极控制机设计 | 利用完成简单任务的经验来协助完成较困难的任务 | [ |
布尔极性问题 | 解决原始奇偶校验问题及其小规模变体 | [ | |
时间序列预测 | 将拟合时间序列数据视为符号回归,且并行发展多个符号回归 | [ |
1 | TIAN Y, LIU R, ZHANG X, et al. A multipopulation evolutionary algorithm for solving large-scale multimodal multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2020, 25(3): 405-418. 10.1109/tevc.2020.3044711 |
2 | WU S H, ZHAN Z H, ZHANG J. SAFE: scale-adaptive fitness evaluation method for expensive optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(3): 478-491. 10.1109/tevc.2021.3051608 |
3 | HUANG Z M, CHEN W N, LI Q, et al. Ant colony evacuation planner: an ant colony system with incremental flow assignment for multipath crowd evacuation[J]. IEEE Transactions on Cybernetics, 2020, 51(11): 5559-5572. 10.1109/tcyb.2020.3013271 |
4 | VANDENHENDE S, GEORGOULIS S, VAN GANSBEKE W, et al. Multi-task learning for dense prediction tasks: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(7): 3614-3633. |
5 | CHEN S, ZHANG Y, YANG Q. Multi-task learning in natural language processing: an overview[EB/OL]. [2023-12-05]. . |
6 | EHRLICH M, SHIELDS T J, ALMAEV T, et al. Facial attributes classification using multi-task representation learning[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2016: 47-55. 10.1109/cvprw.2016.99 |
7 | HAN H, BAI X, HAN H, et al. Self-adjusting multitask particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 26(1): 145-158. 10.1109/tevc.2021.3098523 |
8 | HAN H, BAI X, HOU Y, et al. Multi-task particle swarm optimization with dynamic on-demand allocation[J]. IEEE Transactions on Evolutionary Computation, 2022, 27(4): 1015-1026. 10.1109/tevc.2022.3187512 |
9 | WU X, WANG W, ZHANG T, et al. Improved evolutionary multitasking optimization algorithm with similarity evaluation of search behavior[EB/OL]. IEEE Transactions on Evolutionary Computation, 2024 (Early Access) [2023-11-09]. . 10.1109/tevc.2024.3373131 |
10 | LI H, ONG Y S, GONG M, et al. Evolutionary multitasking sparse reconstruction: framework and case study[J]. IEEE Transactions on Evolutionary Computation, 2018, 23(5): 733-747. 10.1109/tevc.2018.2881955 |
11 | HAN H, BAI X, YANG H, et al. Multitask particle swarm optimization with dynamic transformation[J]. IEEE Transactions on Emerging Topics in Computing, 2023, 11(3): 749-763. 10.1109/tetc.2023.3268182 |
12 | GUPTA A, Y-S ONG, FENG L. Multifactorial evolution: toward evolutionary multitasking[J]. IEEE Transactions on Evolutionary Computation, 2015, 20(3): 343-357. 10.1109/tevc.2015.2458037 |
13 | LI G, ZHANG Q, GAO W. Multipopulation evolution framework for multifactorial optimization[C]// Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion. New York: ACM, 2018: 215-216. 10.1145/3205651.3205761 |
14 | CHEN Y, ZHONG J, FENG L, et al. An adaptive archive-based evolutionary framework for many-task optimization[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2019, 4(3): 369-384. 10.1109/tetci.2019.2916051 |
15 | GONG M, TANG Z, LI H, et al. Evolutionary multitasking with dynamic resource allocating strategy[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5): 858-869. 10.1109/tevc.2019.2893614 |
16 | CHEN Y, ZHONG J, TAN M. A fast memetic multi-objective differential evolution for multi-tasking optimization[C]// Proceedings of the 2018 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2018: 1-8. 10.1109/cec.2018.8477722 |
17 | CHEN K, XUE B, ZHANG M, et al. Evolutionary multitasking for feature selection in high-dimensional classification via particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 26(3): 446-460. 10.1109/tevc.2021.3100056 |
18 | YANG C, CHEN Q, ZHU Z, et al. Evolutionary multitasking for costly task offloading in mobile edge computing networks[J]. IEEE Transactions on Evolutionary Computation, 2024, 28(2): 338-352. 10.1109/tevc.2023.3255266 |
19 | LI L, XUAN M, LIN Q, et al. An evolutionary multitasking algorithm with multiple filtering for high-dimensional feature selection[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(4): 802-816. 10.1109/tevc.2023.3254155 |
20 | TAN K C, FENG L, JIANG M. Evolutionary transfer optimization: a new frontier in evolutionary computation research[J]. IEEE Computational Intelligence Magazine, 2021, 16(1): 22-33. 10.1109/mci.2020.3039066 |
21 | JIAO R, XUE B, ZHANG M. Benefiting from single-objective feature selection to multiobjective feature selection: a multiform approach[J]. IEEE Transactions on Cybernetics, 2023, 53(12): 7773-7786. 10.1109/tcyb.2022.3218345 |
22 | JIANG Y, ZHAN Z-H, TAN K C, et al. Block-level knowledge transfer for evolutionary multitask optimization[J]. IEEE Transactions on Cybernetics, 2024, 54(1): 558-571. 10.1109/tcyb.2023.3273625 |
23 | Y-S ONG, GUPTA A. Evolutionary multitasking: a computer science view of cognitive multitasking[J]. Cognitive Computation, 2016, 8: 125-142. 10.1007/s12559-016-9395-7 |
24 | HAN H, BAI X, HOU Y, et al. Multitask particle swarm optimization with heterogeneous domain adaptation[J]. IEEE Transactions on Evolutionary Computation, 2024, 28(1): 178-192. 10.1109/tevc.2023.3258491 |
25 | MING F, GONG W, WANG L, et al. Constrained multi-objective optimization via multitasking and knowledge transfer[J]. IEEE Transactions on Evolutionary Computation, 2024, 28(1): 77-89. 10.1109/tevc.2022.3230822 |
26 | QIAO K, YU K, QU B, et al. Dynamic auxiliary task-based evolutionary multitasking for constrained multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(3): 642-656. 10.1109/tevc.2022.3175065 |
27 | HAO X, QU R, LIU J. A unified framework of graph-based evolutionary multitasking hyper-heuristic[J]. IEEE Transactions on Evolutionary Computation, 2020, 25(1): 35-47. 10.1109/tevc.2020.2991717 |
28 | QIAO K, LIANG J, YU K, et al. A self-adaptive evolutionary multi-task based constrained multi-objective evolutionary algorithm[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7(4): 1098-1112. 10.1109/tetci.2023.3236633 |
29 | WU S-H, ZHAN Z-H, TAN K C, et al. Orthogonal transfer for multitask optimization[J]. IEEE Transactions on Evolutionary Computation, 2022, 27(1): 185-200. 10.1109/tevc.2022.3160196 |
30 | LI J Y, ZHAN Z H, TAN K C, et al. A meta-knowledge transfer-based differential evolution for multitask optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 26(4): 719-734. 10.1109/tevc.2021.3131236 |
31 | CHEN H, LIU H L, GU F, et al. A multiobjective multitask optimization algorithm using transfer rank[J]. IEEE Transactions on Evolutionary Computation, 2022, 27(2): 237-250. 10.1109/tevc.2022.3147568 |
32 | WU Y, DING H, GONG M, et al. Evolutionary multiform optimization with two-stage bidirectional knowledge transfer strategy for point cloud registration[J]. IEEE Transactions on Evolutionary Computation, 2024, 28(1): 62-76. 10.1109/tevc.2022.3215743 |
33 | JIANG Y, ZHAN Z H, TAN K C, et al. A bi-objective knowledge transfer framework for evolutionary many-task optimization[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(5): 1514-1528. 10.1109/tevc.2022.3210783 |
34 | HUANG Y, ZHOU W, WANG Y, et al. Evolutionary multitasking with centralized learning for large-scale combinatorial multi-objective optimization[J/OL]. IEEE Transactions on Evolutionary Computation, 2023 (Early Access) [2023-11-09]. . 10.1109/tevc.2023.3323877 |
35 | LIN J, LIU H L, XUE B, et al. Multiobjective multitasking optimization based on incremental learning[J]. IEEE Transactions on Evolutionary Computation, 2019, 24(5): 824-838. 10.1109/tevc.2019.2962747 |
36 | WANG X, DONG Z, TANG L, et al. Multiobjective multitask optimization-neighborhood as a bridge for knowledge transfer[J]. IEEE Transactions on Evolutionary Computation, 2022, 27(1): 155-169. 10.1109/tevc.2022.3154416 |
37 | TANG Z, GONG M, WU Y, et al. Regularized evolutionary multitask optimization: learning to intertask transfer in aligned subspace[J]. IEEE Transactions on Evolutionary Computation, 2020, 25(2): 262-276. 10.1109/tevc.2020.3023480 |
38 | CHEN Z, ZHOU Y, HE X, et al. Learning task relationships in evolutionary multitasking for multiobjective continuous optimization[J]. IEEE Transactions on Cybernetics, 2020, 52(6): 5278-5289. 10.1109/TCYB.2020.3029176 |
39 | BAI L, LIN W, GUPTA A, et al. From multitask gradient descent to gradient-free evolutionary multitasking: a proof of faster convergence[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8561-8573. 10.1109/tcyb.2021.3052509 |
40 | GUPTA A, ONG Y S, FENG L, et al. Multiobjective multifactorial optimization in evolutionary multitasking[J]. IEEE Transactions on Cybernetics, 2016, 47(7): 1652-1665. 10.1109/tcyb.2016.2554622 |
41 | YUAN Y, Y-S ONG, FENG L, et al. Evolutionary multitasking for multiobjective continuous optimization: benchmark problems, performance metrics and baseline results[R/OL]. [2023-11-09].. 10.48550/arXiv.1706.02766 |
42 | OSABA E, MARTINEZ A D, GALVEZ A, et al. dMFEA-Ⅱ: an adaptive multifactorial evolutionary algorithm for permutation-based discrete optimization problems[C]// Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion. New York: ACM, 2020: 1690-1696. 10.1145/3377929.3398084 |
43 | FENG L, HUANG Y, ZHOU L, et al. Explicit evolutionary multitasking for combinatorial optimization: a case study on capacitated vehicle routing problem[J]. IEEE Transactions on Cybernetics, 2020, 51(6): 3143-3156. 10.1109/tcyb.2019.2962865 |
44 | YUAN Y, Y-S ONG, GUPTA A, et al. Evolutionary multitasking in permutation-based combinatorial optimization problems: realization with TSP, QAP, LOP, and JSP[C]// Proceedings of the 2016 IEEE Region 10 Conference. Piscataway: IEEE, 2016: 3157-3164. 10.1109/tencon.2016.7848632 |
45 | NGUYEN T T, VI T D, PHAN N L, et al. Multifactorial evolutionary optimization to maximize lifetime of wireless sensor network[J]. Information Sciences, 2021, 576: 355-373. 10.1016/j.ins.2021.06.056 |
46 | BAO L, QI Y, SHEN M, et al. An evolutionary multitasking algorithm for cloud computing service composition[C]// Proceedings of the 14th World Congress, Held as Part of the Services Conference Federation, SCF 2018, LNPSE 10975. Cham: Springer, 2018: 130-144. 10.1007/978-3-319-94472-2_10 |
47 | YOKOYA G, XIAO H, HATANAKA T. Multifactorial optimization using artificial bee colony and its application to car structure design optimization[C]// Proceedings of the 2019 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2019: 3404-3409. 10.1109/cec.2019.8789940 |
48 | RIOS T, VAN STEIN B, BÄCK T, et al. Multitask shape optimization using a 3-D point cloud autoencoder as unified representation[J]. IEEE Transactions on Evolutionary Computation, 2021, 26(2): 206-217. 10.1109/tevc.2021.3086308 |
49 | DAI W, WANG Z, XUE K. System-in-package design using multi-task memetic learning and optimization[J]. Memetic Computing, 2022, 14(1): 45-59. 10.1007/s12293-021-00346-5 |
50 | IQBAL M, XUE B, AL-SAHAF H, et al. Cross-domain reuse of extracted knowledge in genetic programming for image classification[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(4): 569-587. 10.1109/tevc.2017.2657556 |
51 | BI Y, XUE B, ZHANG M. Learning and sharing: a multitask genetic programming approach to image feature learning[J]. IEEE Transactions on Evolutionary Computation, 2021, 26(2): 218-232. 10.1109/tevc.2021.3097043 |
52 | MARTINEZ A D, OSABA E, DEL SERY J, et al. Simultaneously evolving deep reinforcement learning models using multifactorial optimization[C]// Proceedings of the 2020 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2020: 1-8. 10.1109/cec48606.2020.9185667 |
53 | MARTINEZ A D, DEL SER J, OSABA E, et al. Adaptive multifactorial evolutionary optimization for multitask reinforcement learning[J]. IEEE Transactions on Evolutionary Computation, 2021, 26(2): 233-247. 10.1109/tevc.2021.3083362 |
54 | ZHANG F, MEI Y, NGUYEN S, et al. Surrogate-assisted evolutionary multitask genetic programming for dynamic flexible job shop scheduling[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(4): 651-665. 10.1109/tevc.2021.3065707 |
55 | GUPTA A, MAŃDZIUK J, Y-S ONG. Evolutionary multitasking in bi-level optimization[J]. Complex & Intelligent Systems, 2015, 1: 83-95. 10.1007/s40747-016-0011-y |
56 | WU D, TAN X. MultiTasking Genetic Algorithm (MTGA) for fuzzy system optimization[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(6): 1050-1061. 10.1109/tfuzz.2020.2968863 |
57 | SHEN F, LIU J, WU K. Evolutionary multitasking fuzzy cognitive map learning[J]. Knowledge-Based Systems, 2020, 192: 105294. 10.1016/j.knosys.2019.105294 |
58 | SAGARNA R, Y-S ONG. Concurrently searching branches in software tests generation through multitask evolution[C]// Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence. Piscataway: IEEE, 2016: 1-8. 10.1109/ssci.2016.7850040 |
59 | WU Y, GONG P, GONG M, et al. Evolutionary multitasking with solution space cutting for point cloud registration[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(1): 110-125. 10.1109/tetci.2023.3290009 |
60 | DA B, GUPTA A, Y-S ONG. Curbing negative influences online for seamless transfer evolutionary optimization[J]. IEEE Transactions on Cybernetics, 2018, 49(12): 4365-4378. 10.1109/tcyb.2018.2864345 |
61 | ZHONG J, LI L, LIU W L, et al. A co-evolutionary cartesian genetic programming with adaptive knowledge transfer[C]// Proceedings of the 2019 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2019: 2665-2672. 10.1109/cec.2019.8790352 |
62 | HUANG S, ZHONG J, YU W-J. Surrogate-assisted evolutionary framework with adaptive knowledge transfer for multi-task optimization[J]. IEEE Transactions on Emerging Topics in Computing, 2019, 9(4): 1930-1944. |
63 | ZHONG J, FENG L, CAI W, et al. Multifactorial genetic programming for symbolic regression problems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(11): 4492-4505. 10.1109/tsmc.2018.2853719 |
64 | XU Z, LIU X, ZHANG K, et al. Cultural transmission based multi-objective evolution strategy for evolutionary multitasking[J]. Information Sciences, 2022, 582: 215-242. 10.1016/j.ins.2021.09.007 |
65 | LIN W, LIN Q, FENG L, et al. Ensemble of domain adaptation-based knowledge transfer for evolutionary multitasking[J]. IEEE Transactions on Evolutionary Computation, 2023, 28(2): 388-402. 10.1109/tevc.2023.3259067 |
66 | ZHOU L, FENG L, TAN K C, et al. Toward adaptive knowledge transfer in multifactorial evolutionary computation[J]. IEEE Transactions on Cybernetics, 2020, 51(5): 2563-2576. 10.1109/tcyb.2020.2974100 |
67 | ZHAO H, NING X, LIU X, et al. What makes evolutionary multi-task optimization better: a comprehensive survey [J]. Applied Soft Computing, 2023, 145: 110545. 10.1016/j.asoc.2023.110545 |
68 | DUAN L, HU H, QIAN Y, et al. A multi-task selected learning approach for solving 3D flexible bin packing problem[C]// Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems. Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems, 2019: 1386-1394. |
69 | TOMOV M S, SCHULZ E, GERSHMAN S J. Multi-task reinforcement learning in humans[J]. Nature Human Behaviour, 2021, 5(6): 764-773. 10.1038/s41562-020-01035-y |
70 | LI S, GONG W, WANG L, et al. Evolutionary multitasking via reinforcement learning[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(1): 762-775. 10.1109/tetci.2023.3281876 |
71 | HARIHARAN S, BISDIKIAN C, KAPLAN L M, et al. Efficient solutions framework for optimal multitask resource assignments for data fusion in wireless sensor networks[J]. ACM Transactions on Sensor Networks, 2014, 10(3): Article No. 48. 10.1145/2594768 |
72 | CHEN W, WANG D, LI K. Multi-user multi-task computation offloading in green mobile edge cloud computing[J]. IEEE Transactions on Services Computing, 2018, 12(5): 726-738. 10.1109/tsc.2018.2826544 |
73 | ZONG W, LIU Z, YANG S, et al. Multi-task oriented participant recruitment for vehicular crowdsensing[C]// Proceedings of the 4th International Conference on Internet of Vehicles: Technologies and Services for Smart Cities, LNISA 10689. Cham: Springer, 2017: 92-104. |
74 | ZHOU Y, REN H, XIAO K, et al. Joint data routing and service migration via evolutionary multitasking optimization in vehicular networks[C]// Proceedings of the 2023 International Conference on Neural Computing for Advanced Applications, CCIS 1870. Singapore: Springer, 2023: 434-449. |
75 | SHANG Q, HUANG Y, WANG Y, et al. Solving vehicle routing problem by memetic search with evolutionary multitasking[J]. Memetic Computing, 2022, 14(1): 31-44. 10.1007/s12293-021-00352-7 |
76 | MOON E K, WANG L-C, DOLFI D V, et al. Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors[J]. Clinical Cancer Research, 2014, 20(16): 4262-4273. 10.1158/1078-0432.ccr-13-2627 |
77 | CHENG L, CHEN S, LIU X, et al. Registration of laser scanning point clouds: a review[J]. Sensors, 2018, 18(5): 1641. 10.3390/s18051641 |
78 | ZHOU L, FENG L, ZHONG J, et al. Evolutionary multitasking in combinatorial search spaces: a case study in capacitated vehicle routing problem[C]// Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence. Piscataway: IEEE, 2016: 1-8. 10.1109/ssci.2016.7850039 |
79 | WU Y, LIU Y, GONG M, et al. Multi-view point cloud registration based on evolutionary multitasking with bi-channel knowledge sharing mechanism[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 7(2): 357-374. 10.1109/tetci.2022.3205384 |
80 | CAI Y, PENG D, LIU P, et al. Evolutionary multi-task optimization with hybrid knowledge transfer strategy[J]. Information Sciences, 2021, 580: 874-896. 10.1016/j.ins.2021.09.021 |
81 | GEIGER C D, UZSOY R, AYTUĞ H. Rapid modeling and discovery of priority dispatching rules: an autonomous learning approach[J]. Journal of Scheduling, 2006, 9: 7-34. 10.1007/s10951-006-5591-8 |
82 | HATEM A, QIAN Y, WANG Y. Point-TTA: test-time adaptation for point cloud registration using multitask meta-auxiliary learning[C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 16494-16504. 10.1109/iccv51070.2023.01512 |
83 | FENG D, ZHOU Y, XU C, et al. A simple and efficient multi-task network for 3D object detection and road understanding[C]// Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2021: 7067-7074. 10.1109/iros51168.2021.9635858 |
84 | LIANG Z, ZHU Y, WANG X, et al. Evolutionary multitasking for multi-objective optimization based on generative strategies[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(4): 1042-1056. 10.1109/tevc.2022.3189029 |
85 | PARK J, MEI Y, NGUYEN S, et al. Evolutionary multitask optimisation for dynamic job shop scheduling using niched genetic programming[C]// Proceedings of the 31st Australasian Joint Conference on Artificial Intelligence, LNAI 11320. Cham: Springer, 2018: 739-751. |
86 | KHORASANIAN D, MOSLEHI G. Two-machine flow shop scheduling problem with blocking, multi-task flexibility of the first machine, and preemption[J]. Computers & Operations Research, 2017, 79(C): 94-108. 10.1016/j.cor.2016.09.023 |
87 | NING Y, JIA J, WU Z, et al. Multi-task deep learning for user intention understanding in speech interaction systems[C]// Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2017, 31(1): 161-167. 10.1609/aaai.v31i1.10493 |
88 | DENG H, BIRDAL T, ILIC S. PPFNet: global context aware local features for robust 3D point matching[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 195-205. 10.1109/cvpr.2018.00028 |
89 | KOFLER K, HAQ I U, SCHIKUTA E. User-centric, heuristic optimization of service composition in clouds[C]// Proceedings of the 16th International Euro-Par Conference on Parallel Processing, LNTCS 6271. Berlin: Springer, 2010: 405-417. |
90 | ZHANG F, CAO J, TAN W, et al. Evolutionary scheduling of dynamic multitasking workloads for big-data analytics in elastic cloud[J]. IEEE Transactions on Emerging Topics in Computing, 2014, 2(3): 338-351. 10.1109/tetc.2014.2348196 |
91 | ATTA-UR-RAHMAN, DASH S, AHMAD M, IQBAL T. Mobile cloud computing: a green perspective[C]// Intelligent Systems: Proceedings of ICMIB 2020, LNNS 185. Singapore: Springer, 2021: 523-533. 10.1007/978-981-33-6081-5_46 |
92 | LE H M, DO T T, HOANG T, et al. SDRSAC: semidefinite-based randomized approach for robust point cloud registration without correspondences[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 124-133. 10.1109/cvpr.2019.00021 |
93 | POMERLEAU F, COLAS F, SIEGWART R. A review of point cloud registration algorithms for mobile robotics[J]. Foundations and Trends in Robotics, 2015, 4(1): 1-104. 10.1561/2300000035 |
94 | WU Y, DING H, XIANG B, et al. Evolutionary multitask optimization in real-world applications: a survey[J]. Journal of Artificial Intelligence and Technology, 2023, 3(1): 32-38. |
95 | WU Y, WANG R, DING H, et al. Multifactorial ant lion optimisation algorithm[C]// Proceedings of the 6th Asian Conference on Artificial Intelligence Technology. Piscataway: IEEE, 2022: 1-4. 10.1109/acait56212.2022.10137898 |
96 | WU S-H, ZHAN Z-H, TAN K C, et al. Transferable adaptive differential evolution for many-task optimization[J]. IEEE Transactions on Cybernetics, 2023, 53(11): 7295-7308. 10.1109/tcyb.2023.3234969 |
97 | LIU S, LIN Q, FENG L, et al. Evolutionary multitasking for large-scale multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(2): 248-262. |
98 | FENG Y, FENG L, KWONG S, et al. A multivariation multifactorial evolutionary algorithm for large-scale multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 26(2): 248-262. 10.1109/tevc.2021.3119933 |
99 | ZENG A, SONG S, NIEßNER M, et al. 3DMatch: learning local geometric descriptors from RGB-D reconstructions[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1802-1811. 10.1109/cvpr.2017.29 |
100 | YANG Z, PAN J Z, LUO L, et al. Extreme relative pose estimation for RGB-D scans via scene completion[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4531-4540. 10.1109/cvpr.2019.00466 |
101 | NGUYEN S B S, ZHANG M. A hybrid discrete particle swarm optimisation method for grid computation scheduling[C]// Proceedings of the 2014 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2014: 483-490. 10.1109/cec.2014.6900658 |
[1] | Jiawei ZHAO, Xuefeng CHEN, Liang FENG, Yaqing HOU, Zexuan ZHU, Yew‑Soon Ong. Review of evolutionary multitasking from the perspective of optimization scenarios [J]. Journal of Computer Applications, 2024, 44(5): 1325-1337. |
[2] | Xiaobing WANG, Xiongwei ZHANG, Tieyong CAO, Yunfei ZHENG, Yong WANG. Self-distillation object segmentation method via scale-attention knowledge transfer [J]. Journal of Computer Applications, 2024, 44(1): 129-137. |
[3] | Zhongbo HU, Xupeng WANG. Multifactorial backtracking search optimization algorithm for solving automated test case generation problem [J]. Journal of Computer Applications, 2023, 43(4): 1214-1219. |
[4] | Caitong BAI, Xiaolong CUI, Huiji ZHENG, Ai LI. Robust speech recognition technology based on self-supervised knowledge transfer [J]. Journal of Computer Applications, 2022, 42(10): 3217-3223. |
[5] | WEI Chunwu, ZHAO Juanjuan, TANG Xiaoxian, QIANG Yan. Knowledge extraction method for follow-up data based on multi-term distillation network [J]. Journal of Computer Applications, 2021, 41(10): 2871-2878. |
[6] | YU Huangyue, WANG Han, GUO Mengting. Video keyframe extraction based on users' interests [J]. Journal of Computer Applications, 2017, 37(11): 3139-3144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||