Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (1): 129-137.DOI: 10.11772/j.issn.1001-9081.2023010075
• Artificial intelligence • Previous Articles
Xiaobing WANG1,2, Xiongwei ZHANG1(), Tieyong CAO1, Yunfei ZHENG1,2,3, Yong WANG2,3
Received:
2023-01-31
Revised:
2023-04-25
Accepted:
2023-05-04
Online:
2023-06-06
Published:
2024-01-10
Contact:
Xiongwei ZHANG
About author:
WANG Xiaobing, born in 1981, Ph. D., lecturer. His research interests include intelligent information processing, deep learning.Supported by:
王晓兵1,2, 张雄伟1(), 曹铁勇1, 郑云飞1,2,3, 王勇2,3
通讯作者:
张雄伟
作者简介:
王晓兵(1981—),男,安徽滁州人,讲师,博士,主要研究方向:智能信息处理、深度学习;基金资助:
CLC Number:
Xiaobing WANG, Xiongwei ZHANG, Tieyong CAO, Yunfei ZHENG, Yong WANG. Self-distillation object segmentation method via scale-attention knowledge transfer[J]. Journal of Computer Applications, 2024, 44(1): 129-137.
王晓兵, 张雄伟, 曹铁勇, 郑云飞, 王勇. 基于尺度注意知识迁移的自蒸馏目标分割方法[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 129-137.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023010075
网络 | COD | CAMP | DUT-O | SOC | THUR | 平均值 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fβ | MAE | Fβ | MAE | Fβ | MAE | Fβ | MAE | Fβ | MAE | Fβ | MAE | |
ENet | 63.07 | 6.36 | 59.23 | 0.95 | 78.38 | 5.39 | 86.83 | 5.93 | 82.60 | 4.97 | 74.02 | 4.72 |
POOL+R | 61.55 | 6.50 | 58.29 | 1.29 | 82.95 | 4.41 | 87.92 | 4.77 | 85.25 | 3.78 | 75.19 | 4.15 |
SINet | 66.54 | 6.42 | 69.73 | 1.73 | 82.76 | 4.90 | 85.41 | 10.00 | 86.81 | 3.63 | 78.25 | 5.34 |
R2Net | 65.42 | 5.59 | 75.61 | 0.69 | 83.44 | 4.48 | 88.49 | 4.74 | 88.40 | 2.96 | 80.27 | 3.69 |
CCNet | 64.44 | 4.78 | 58.29 | 0.76 | 79.70 | 4.68 | 87.27 | 4.72 | 84.80 | 3.57 | 74.90 | 3.70 |
CSFNet+R | 58.66 | 6.94 | 35.77 | 1.82 | 77.96 | 6.02 | 85.89 | 5.82 | 84.93 | 3.68 | 68.64 | 4.86 |
GATENet | 65.81 | 5.72 | 68.21 | 0.80 | 82.22 | 4.79 | 88.20 | 4.88 | 87.59 | 3.32 | 78.41 | 3.90 |
DSR | 54.68 | 7.22 | 46.69 | 1.07 | 83.88 | 4.83 | 82.44 | 7.42 | 84.04 | 3.77 | 70.35 | 4.86 |
CPD | 60.42 | 7.09 | 67.35 | 1.63 | 80.63 | 4.42 | 83.59 | 12.81 | 87.90 | 3.15 | 75.98 | 5.82 |
本文网络 | 68.10 | 4.54 | 74.28 | 0.51 | 83.61 | 3.98 | 89.01 | 4.39 | 88.40 | 2.65 | 80.68 | 3.21 |
Tab. 1 Quantitative segmentation performance comparison among different networks
网络 | COD | CAMP | DUT-O | SOC | THUR | 平均值 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fβ | MAE | Fβ | MAE | Fβ | MAE | Fβ | MAE | Fβ | MAE | Fβ | MAE | |
ENet | 63.07 | 6.36 | 59.23 | 0.95 | 78.38 | 5.39 | 86.83 | 5.93 | 82.60 | 4.97 | 74.02 | 4.72 |
POOL+R | 61.55 | 6.50 | 58.29 | 1.29 | 82.95 | 4.41 | 87.92 | 4.77 | 85.25 | 3.78 | 75.19 | 4.15 |
SINet | 66.54 | 6.42 | 69.73 | 1.73 | 82.76 | 4.90 | 85.41 | 10.00 | 86.81 | 3.63 | 78.25 | 5.34 |
R2Net | 65.42 | 5.59 | 75.61 | 0.69 | 83.44 | 4.48 | 88.49 | 4.74 | 88.40 | 2.96 | 80.27 | 3.69 |
CCNet | 64.44 | 4.78 | 58.29 | 0.76 | 79.70 | 4.68 | 87.27 | 4.72 | 84.80 | 3.57 | 74.90 | 3.70 |
CSFNet+R | 58.66 | 6.94 | 35.77 | 1.82 | 77.96 | 6.02 | 85.89 | 5.82 | 84.93 | 3.68 | 68.64 | 4.86 |
GATENet | 65.81 | 5.72 | 68.21 | 0.80 | 82.22 | 4.79 | 88.20 | 4.88 | 87.59 | 3.32 | 78.41 | 3.90 |
DSR | 54.68 | 7.22 | 46.69 | 1.07 | 83.88 | 4.83 | 82.44 | 7.42 | 84.04 | 3.77 | 70.35 | 4.86 |
CPD | 60.42 | 7.09 | 67.35 | 1.63 | 80.63 | 4.42 | 83.59 | 12.81 | 87.90 | 3.15 | 75.98 | 5.82 |
本文网络 | 68.10 | 4.54 | 74.28 | 0.51 | 83.61 | 3.98 | 89.01 | 4.39 | 88.40 | 2.65 | 80.68 | 3.21 |
网络 | 参数量/106 | 推断帧率/(frame·s-1) | 浮点运算量/GFLOPs |
---|---|---|---|
ENet | 34.80 | 37.59 | 29.19 |
POOL+R | 70.50 | 21.53 | 38.46 |
SINet | 48.90 | 30.10 | 7.86 |
R2Net | 26.12 | 37.21 | 7.26 |
CCNet | 52.10 | 35.34 | 61.57 |
CSFNet+R | 36.50 | 36.68 | 6.04 |
GATENet | 28.63 | 33.03 | 55.17 |
DSR | 47.85 | 8.80 | 55.13 |
CPD | 75.29 | 32.60 | 7.19 |
本文网络 | 23.79 | 38.15 | 4.32 |
Tab. 2 Quantitative efficiency comparison among different networks
网络 | 参数量/106 | 推断帧率/(frame·s-1) | 浮点运算量/GFLOPs |
---|---|---|---|
ENet | 34.80 | 37.59 | 29.19 |
POOL+R | 70.50 | 21.53 | 38.46 |
SINet | 48.90 | 30.10 | 7.86 |
R2Net | 26.12 | 37.21 | 7.26 |
CCNet | 52.10 | 35.34 | 61.57 |
CSFNet+R | 36.50 | 36.68 | 6.04 |
GATENet | 28.63 | 33.03 | 55.17 |
DSR | 47.85 | 8.80 | 55.13 |
CPD | 75.29 | 32.60 | 7.19 |
本文网络 | 23.79 | 38.15 | 4.32 |
模型 | COD | CAMP | DUT-O | SOC | THUR | 平均值 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fβ | MAE | Fβ | MAE | Fβ | MAE | Fβ | MAE | Fβ | MAE | Fβ | MAE | |
基准网络 | 65.50 | 4.70 | 69.77 | 0.60 | 81.35 | 4.55 | 87.66 | 4.66 | 87.30 | 2.99 | 78.32 | 3.50 |
BL+DKS | 66.90 | 4.54 | 71.75 | 0.57 | 82.18 | 4.27 | 88.18 | 4.91 | 87.62 | 2.81 | 79.48(+1.16) | 3.42(-0.06) |
BL+BYOT | 66.89 | 4.57 | 71.83 | 0.56 | 82.26 | 4.22 | 87.98 | 4.44 | 87.72 | 2.89 | 79.33(+1.01) | 3.34(-0.15) |
BL+DHM | 65.45 | 4.66 | 72.16 | 0.57 | 82.43 | 4.43 | 87.85 | 4.64 | 88.03 | 2.98 | 79.18(+0.86) | 3.46(-0.04) |
BL+SA | 67.10 | 4.59 | 70.51 | 0.56 | 82.07 | 4.27 | 88.29 | 4.55 | 87.53 | 2.86 | 79.10(+0.78) | 3.37(-0.13) |
BL+TF | 67.08 | 4.61 | 72.40 | 0.52 | 83.08 | 3.99 | 88.49 | 4.46 | 88.33 | 2.72 | 79.88(+1.56) | 3.26(-0.24) |
BL+FR | 65.80 | 4.60 | 69.98 | 0.59 | 81.74 | 4.49 | 88.30 | 4.61 | 87.14 | 2.30 | 78.59(+0.27) | 3.31(-0.18) |
本文模型 | 68.10 | 4.54 | 74.28 | 0.51 | 83.61 | 3.98 | 89.01 | 4.39 | 88.40 | 2.65 | 80.68(+2.36) | 3.21(-0.29) |
Tab. 3 Self-distillation performance improvement effect comparison among different models
模型 | COD | CAMP | DUT-O | SOC | THUR | 平均值 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fβ | MAE | Fβ | MAE | Fβ | MAE | Fβ | MAE | Fβ | MAE | Fβ | MAE | |
基准网络 | 65.50 | 4.70 | 69.77 | 0.60 | 81.35 | 4.55 | 87.66 | 4.66 | 87.30 | 2.99 | 78.32 | 3.50 |
BL+DKS | 66.90 | 4.54 | 71.75 | 0.57 | 82.18 | 4.27 | 88.18 | 4.91 | 87.62 | 2.81 | 79.48(+1.16) | 3.42(-0.06) |
BL+BYOT | 66.89 | 4.57 | 71.83 | 0.56 | 82.26 | 4.22 | 87.98 | 4.44 | 87.72 | 2.89 | 79.33(+1.01) | 3.34(-0.15) |
BL+DHM | 65.45 | 4.66 | 72.16 | 0.57 | 82.43 | 4.43 | 87.85 | 4.64 | 88.03 | 2.98 | 79.18(+0.86) | 3.46(-0.04) |
BL+SA | 67.10 | 4.59 | 70.51 | 0.56 | 82.07 | 4.27 | 88.29 | 4.55 | 87.53 | 2.86 | 79.10(+0.78) | 3.37(-0.13) |
BL+TF | 67.08 | 4.61 | 72.40 | 0.52 | 83.08 | 3.99 | 88.49 | 4.46 | 88.33 | 2.72 | 79.88(+1.56) | 3.26(-0.24) |
BL+FR | 65.80 | 4.60 | 69.98 | 0.59 | 81.74 | 4.49 | 88.30 | 4.61 | 87.14 | 2.30 | 78.59(+0.27) | 3.31(-0.18) |
本文模型 | 68.10 | 4.54 | 74.28 | 0.51 | 83.61 | 3.98 | 89.01 | 4.39 | 88.40 | 2.65 | 80.68(+2.36) | 3.21(-0.29) |
序号 | 推断网络损失度量 | 自蒸馏分支损失度量 | 知识匹配模式 | 平均值 | ||||
---|---|---|---|---|---|---|---|---|
交叉熵 | 交叉熵 | KL散度 | L2 | 自上而下 | 一致性 | Fβ | MAE | |
1 | √ | — | — | — | — | — | 81.35 | 4.55 |
2 | √ | √ | — | — | — | — | 82.36(+1.01) | 4.18(-0.37) |
3 | √ | √ | √ | — | √ | — | 83.04(+1.75) | 4.04(-0.51) |
4 | √ | √ | √ | — | — | √ | 82.67(+1.32) | 4.13(-0.42) |
5 | √ | √ | √ | — | √ | √ | 83.44(+2.09) | 4.01(-0.54) |
6 | √ | √ | √ | √ | √ | — | 83.23(+1.88) | 4.03(-0.52) |
7 | √ | √ | √ | √ | — | √ | 83.14(+1.79) | 4.07(-0.48) |
8 | √ | √ | √ | √ | √ | √ | 83.61(+2.26) | 3.98(-0.57) |
Tab. 4 Ablation experiment results on DUT-O
序号 | 推断网络损失度量 | 自蒸馏分支损失度量 | 知识匹配模式 | 平均值 | ||||
---|---|---|---|---|---|---|---|---|
交叉熵 | 交叉熵 | KL散度 | L2 | 自上而下 | 一致性 | Fβ | MAE | |
1 | √ | — | — | — | — | — | 81.35 | 4.55 |
2 | √ | √ | — | — | — | — | 82.36(+1.01) | 4.18(-0.37) |
3 | √ | √ | √ | — | √ | — | 83.04(+1.75) | 4.04(-0.51) |
4 | √ | √ | √ | — | — | √ | 82.67(+1.32) | 4.13(-0.42) |
5 | √ | √ | √ | — | √ | √ | 83.44(+2.09) | 4.01(-0.54) |
6 | √ | √ | √ | √ | √ | — | 83.23(+1.88) | 4.03(-0.52) |
7 | √ | √ | √ | √ | — | √ | 83.14(+1.79) | 4.07(-0.48) |
8 | √ | √ | √ | √ | √ | √ | 83.61(+2.26) | 3.98(-0.57) |
1 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
2 | WANG J, SUN K, CHENG T, et al. Deep high-resolution representation learning for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3349-3364. 10.1109/tpami.2020.2983686 |
3 | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. 10.1109/cvpr.2017.243 |
4 | HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network [EB/OL]. (2015-03-09) [2020-11-10]. . |
5 | LUO J H, WU J, LIN W. ThiNet: A filter level pruning method for deep neural network compression [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5068-5076. 10.1109/iccv.2017.541 |
6 | RASTEGARI M, ORDONEZ V, REDMONON J, et al. XNOR-Net: ImageNet classification using binary convolutional neural networks [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9908. Cham: Springer, 2016: 525-542. |
7 | FURLANELLO T, LIPTON Z C, TSCHANNEN M, et al. Born again neural networks [C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 1607-1616. |
8 | SUN D, YAO A, ZHOU A, et al. Deeply-supervised knowledge synergy [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 6990-6999. 10.1109/cvpr.2019.00716 |
9 | HOU Y, MA Z, LIU C, et al. Learning lightweight lane detection CNNs by self attention distillation [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1013-1021. 10.1109/iccv.2019.00110 |
10 | LI D, CHEN Q. Dynamic hierarchical mimicking towards consistent optimization objectives [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 7639-7648. 10.1109/cvpr42600.2020.00766 |
11 | JI M, SHIN S, HWANG S, et al. Refine myself by teaching myself: feature refinement via self-knowledge distillation [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10659-10668. 10.1109/cvpr46437.2021.01052 |
12 | ZHANG L, BAO C, MA K. Self-distillation: towards efficient and compact neural networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4388-4403. |
13 | 郑云飞,王晓兵,张雄伟,等.基于金字塔知识的自蒸馏HRNet目标分割方法[J].电子学报, 2023, 51(3): 746-756. 10.12263/DZXB.20210169 |
ZHENG Y F, WANG X B, ZHANG X W, et al. The self-distillation HRNet object segmentation based on the pyramid knowledge [J]. Acta Electronica Sinica, 2023, 51(3): 746-756. 10.12263/DZXB.20210169 | |
14 | YUAN L, TAY F E H, LI G, et al. Revisiting knowledge distillation via label smoothing regularization [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3902-3910. 10.1109/cvpr42600.2020.00396 |
15 | YUN S, PARK J, LEE K, et al. Regularizing class-wise predictions via self-knowledge distillation [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13873-13882. 10.1109/cvpr42600.2020.01389 |
16 | XU T B, LIU C L. Data-distortion guided self-distillation for deep neural networks [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 5565-5572. 10.1609/aaai.v33i01.33015565 |
17 | LEE H, HWANG S J, SHIN J. Self-supervised label augmentation via input transformations [C]// Proceedings of the 2020 International Conference on Machine Learning. New York: JMLR.org, 2020: 5714-5724. |
18 | ZHOU B, BAU D, OLIVA A, et al. Interpreting deep visual representations via network dissection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(9): 2131-2145. 10.1109/tpami.2018.2858759 |
19 | HUANG Z, WANG X, HUANG L, et al. CCNet: criss-cross attention for semantic segmentation [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 603-612. 10.1109/iccv.2019.00069 |
20 | LI X, ZHONG Z, WU J, et al. Expectation-maximization attention networks for semantic segmentation [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9166-9175. 10.1109/iccv.2019.00926 |
21 | WU Z, SU L, HUANG Q. Cascaded partial decoder for fast and accurate salient object detection [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3902-3911. 10.1109/cvpr.2019.00403 |
22 | FAN D P, JI G P, SUN G, et al. Camouflaged object detection [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Piscataway: IEEE, 2020: 2774-2784. 10.1109/cvpr42600.2020.00285 |
23 | WANG L, CHEN R, ZHU L, et al. Deep sub-region network for salient object detection [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(2): 728-741. 10.1109/tcsvt.2020.2988768 |
24 | GAO S H, TAN Y Q, CHENG M M, et al. Highly efficient salient object detection with 100k parameters [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12351. Cham: Springer, 2020: 702-721. |
25 | ZHAO X, PANG Y, ZHANG L, et al. Suppress and balance: a simple gated network for salient object detection [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12347. Cham: Springer, 2020: 35-51. |
26 | 文凯,唐伟伟,熊俊臣.基于注意力机制和有效分解卷积的实时分割算法[J].计算机应用, 2022, 42(9): 2659-2666. |
WEN K, TANG W W, XIONG J C. Real-time segmentation algorithm based on attention mechanism and effective factorized convolution [J]. Journal of Computer Applications, 2022, 42(9): 2659-2666. | |
27 | 林荐壮,杨文忠,谭思翔,等.融合滤波增强和反转注意力网络用于息肉分割[J].计算机应用, 2023, 43(1): 265-272. |
LIN J Z, YANG W Z, TAN S X, et al. Fusing filter enhancement and reverse attention network for polyp segmentation [J]. Journal of Computer Applications, 2023, 43(1): 265-272. | |
28 | ALLEN-ZHU Z, LI Y. Towards understanding ensemble, knowledge distillation and self-distillation in deep learning [EB/OL]. (2021-07-03) [2022-12-12]. . |
29 | ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2830-2839. 10.1109/cvpr.2017.660 |
30 | CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [EB/OL]. (2017-12-05) [2022-12-12]. . 10.1007/978-3-030-01234-2_49 |
31 | QIAO Z, YUAN X, ZHUANG C, et al. Attention pyramid module for scene recognition [C]// Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 7521-7528. 10.1109/icpr48806.2021.9412235 |
32 | REBUFFI S A, FONG R, JI X, et al. There and back again: Revisiting backpropagation saliency methods [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8836-8845. 10.1109/cvpr42600.2020.00886 |
33 | ZHENG Y, ZHANG X, WANG F, et al. Detection of people with camouflage pattern via dense deconvolution network [J]. IEEE Signal Processing Letters, 2019, 26(1): 29-33. 10.1109/lsp.2018.2825959 |
34 | YANG C, ZHANG L, LU H, et al. Saliency detection via graph-based manifold ranking [C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013: 3166-3173. 10.1109/cvpr.2013.407 |
35 | FAN D P, CHENG M M, LIU J J, et al. Salient objects in clutter: Bringing salient object detection to the foreground [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11219. Cham: Springer, 2018: 196-212. |
36 | CHENG M M, MITRA N J, HUANG X, et al. SalientShape: Group saliency in image collections [J]. The Visual Computer, 2014, 30(4): 443-453. 10.1007/s00371-013-0867-4 |
37 | ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection [C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 1597-1604. 10.1109/cvpr.2009.5206596 |
38 | DENG J, DONG W, SOCHER R, et al. ImageNet: A large-scale hierarchical image database [C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. 10.1109/cvpr.2009.5206848 |
39 | GAO S H, CHENG M M, ZHAO K, et al. Res2Net: A new multi-scale backbone architecture [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662. 10.1109/tpami.2019.2938758 |
40 | FENG M, LU H, YU Y. Residual learning for salient object detection [J]. IEEE Transactions on Image Processing, 2020, 29: 4696-4708. 10.1109/tip.2020.2975919 |
41 | LIU J J, HOU Q, CHENG M M, et al. A simple pooling-based design for real-time salient object detection [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3912-3921. 10.1109/cvpr.2019.00404 |
[1] | Chunlan ZHAN, Anzhi WANG, Minghui WANG. Camouflage object segmentation method based on channel attention and edge fusion [J]. Journal of Computer Applications, 2023, 43(7): 2166-2172. |
[2] | Yang LIU, Zhiyang LU, Jun WANG, Jun SHI. Gibbs artifact removal algorithm for magnetic resonance imaging based on self-attention connection UNet [J]. Journal of Computer Applications, 2023, 43(5): 1606-1611. |
[3] | Zhongbo HU, Xupeng WANG. Multifactorial backtracking search optimization algorithm for solving automated test case generation problem [J]. Journal of Computer Applications, 2023, 43(4): 1214-1219. |
[4] | Xiao LYU, Huihui SONG, Jiaqing FAN. Semi-supervised video object segmentation via deep and shallow representations fusion [J]. Journal of Computer Applications, 2022, 42(12): 3884-3890. |
[5] | Caitong BAI, Xiaolong CUI, Huiji ZHENG, Ai LI. Robust speech recognition technology based on self-supervised knowledge transfer [J]. Journal of Computer Applications, 2022, 42(10): 3217-3223. |
[6] | WANG Ning, SONG Huihui, ZHANG Kaihua. Accurate object tracking algorithm based on distance weighting overlap prediction and ellipse fitting optimization [J]. Journal of Computer Applications, 2021, 41(4): 1100-1105. |
[7] | WEI Chunwu, ZHAO Juanjuan, TANG Xiaoxian, QIANG Yan. Knowledge extraction method for follow-up data based on multi-term distillation network [J]. Journal of Computer Applications, 2021, 41(10): 2871-2878. |
[8] | JIANG Sihao, SONG Huihui, ZHANG Kaihua, TANG Runfa. Video object segmentation method based on dual pyramid network [J]. Journal of Computer Applications, 2019, 39(8): 2242-2246. |
[9] | YU Huangyue, WANG Han, GUO Mengting. Video keyframe extraction based on users' interests [J]. Journal of Computer Applications, 2017, 37(11): 3139-3144. |
[10] | . Moving object segmentation algorithm for river surveillance video [J]. Journal of Computer Applications, 2011, 31(01): 263-265. |
[11] | . Video object segmentation in H.264 compressed domain based on entropy energy [J]. Journal of Computer Applications, 2010, 30(12): 3265-3268. |
[12] | Sen Guo Wei Liu JiangHua Wang. Touched human object segmentation based on Mean-shift algorithm [J]. Journal of Computer Applications, 2009, 29(1): 51-53. |
[13] | . Moving shadow detection algorithm based on region and illumination invariant [J]. Journal of Computer Applications, 2007, 27(9): 2152-2153. |
[14] | LIU Zhen,ZHAO Jie-yu. Video segmentation method based on mixture probabilistic background model [J]. Journal of Computer Applications, 2005, 25(07): 1616-1619. |
[15] | REN Jian-feng,GUO Lei,SHEN Yu-li. Motion segmentation based on multi-model robust estimation [J]. Journal of Computer Applications, 2005, 25(04): 778-780. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||