Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (2): 610-615.DOI: 10.11772/j.issn.1001-9081.2024020227
• Multimedia computing and computer simulation • Previous Articles
Received:2024-03-05
Revised:2024-05-16
Accepted:2024-05-20
Online:2024-06-04
Published:2025-02-10
Contact:
Shijun JING
About author:WEN Shijia, born in 2000, M. S. candidate. Her research interests include mobile robot navigation, visual simultaneous location and mapping, path planning.
通讯作者:
金世俊
作者简介:文诗佳(2000—),女,湖南衡阳人,硕士研究生,主要研究方向:移动机器人导航、视觉同时定位与建图、路径规划;
CLC Number:
Shijia WEN, Shijun JING. Dynamic visual SLAM algorithm incorporating object detection and feature point association[J]. Journal of Computer Applications, 2025, 45(2): 610-615.
文诗佳, 金世俊. 结合目标检测和特征点关联的动态视觉SLAM算法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 610-615.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024020227
| 动态程度 | 数据集 | 绝对轨迹误差/m | 性能提升/% | ||||
|---|---|---|---|---|---|---|---|
| ORB-SLAM2 | 本文算法 | ||||||
| RMSE | STD | RMSE | STD | RMSE | STD | ||
| 静态 | fr1_xyz | 0.009 8 | 0.005 3 | 0.009 9 | 0.005 2 | -1.02 | 1.89 |
| fr1_desk | 0.015 8 | 0.009 2 | 0.015 8 | 0.009 4 | 0.00 | -2.17 | |
| 低动态 | fr3_sitting_xyz | 0.009 6 | 0.004 8 | 0.009 3 | 0.004 6 | 3.13 | 4.17 |
| fr3_sitting_static | 0.008 6 | 0.004 2 | 0.007 0 | 0.003 5 | 18.60 | 16.67 | |
| 高动态 | fr3_walking_rpy | 0.903 1 | 0.492 7 | 0.032 8 | 0.018 3 | 96.37 | 96.29 |
| fr3_walking_xyz | 0.735 7 | 0.424 0 | 0.014 3 | 0.006 7 | 98.06 | 98.42 | |
| fr3_walking_static | 0.383 5 | 0.134 9 | 0.007 4 | 0.003 4 | 98.07 | 97.48 | |
| fr3_walking_halfsphere | 0.598 4 | 0.300 2 | 0.028 6 | 0.014 2 | 95.22 | 95.27 | |
Tab. 1 ATE comparison of proposed algorithm and ORB-SLAM2
| 动态程度 | 数据集 | 绝对轨迹误差/m | 性能提升/% | ||||
|---|---|---|---|---|---|---|---|
| ORB-SLAM2 | 本文算法 | ||||||
| RMSE | STD | RMSE | STD | RMSE | STD | ||
| 静态 | fr1_xyz | 0.009 8 | 0.005 3 | 0.009 9 | 0.005 2 | -1.02 | 1.89 |
| fr1_desk | 0.015 8 | 0.009 2 | 0.015 8 | 0.009 4 | 0.00 | -2.17 | |
| 低动态 | fr3_sitting_xyz | 0.009 6 | 0.004 8 | 0.009 3 | 0.004 6 | 3.13 | 4.17 |
| fr3_sitting_static | 0.008 6 | 0.004 2 | 0.007 0 | 0.003 5 | 18.60 | 16.67 | |
| 高动态 | fr3_walking_rpy | 0.903 1 | 0.492 7 | 0.032 8 | 0.018 3 | 96.37 | 96.29 |
| fr3_walking_xyz | 0.735 7 | 0.424 0 | 0.014 3 | 0.006 7 | 98.06 | 98.42 | |
| fr3_walking_static | 0.383 5 | 0.134 9 | 0.007 4 | 0.003 4 | 98.07 | 97.48 | |
| fr3_walking_halfsphere | 0.598 4 | 0.300 2 | 0.028 6 | 0.014 2 | 95.22 | 95.27 | |
| 动态 程度 | 数据集 | 本文算法 | ORBSLAM2+YOLOv5s | ORB-SLAM2+几何约束 (含特征关联) | ORB-SLAM2+YOLOv5s+ 几何约束(不含特征关联) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ATE/m | R.RPE/(°) | T.RPE /m | ATE/m | R.RPE /(°) | T.RPE /m | ATE/m | R.RPE /(°) | T.RPE /m | ATE/m | R.RPE /(°) | T.RPE /m | ||
| 静态 | fr1_xyz | 0.009 9 | 0.387 9 | 0.006 0 | 0.010 2 | 0.405 7 | 0.006 2 | 0.009 9 | 0.398 4 | 0.006 0 | 0.010 1 | 0.386 9 | 0.005 9 |
| fr1_desk | 0.015 8 | 0.563 6 | 0.009 5 | 0.016 2 | 0.572 3 | 0.009 4 | 0.015 0 | 0.575 6 | 0.009 3 | 0.015 0 | 0.560 3 | 0.009 3 | |
| 低动态 | fr3_sitting_xyz | 0.009 3 | 0.315 9 | 0.008 5 | 0.009 5 | 0.314 4 | 0.008 6 | 0.017 2 | 0.328 2 | 0.009 9 | 0.015 1 | 0.327 5 | 0.009 6 |
| fr3_sitting_static | 0.007 0 | 0.165 2 | 0.005 3 | 0.005 8 | 0.150 3 | 0.004 4 | 0.006 1 | 0.150 3 | 0.004 5 | 0.006 0 | 0.151 6 | 0.004 7 | |
| 高动态 | fr3_walking_xyz | 0.014 3 | 0.385 4 | 0.011 5 | 0.015 1 | 0.389 3 | 0.016 1 | 0.242 3 | 0.600 4 | 0.133 3 | 0.018 0 | 0.404 5 | 0.022 7 |
| fr3_walking_rpy | 0.032 8 | 0.500 0 | 0.021 3 | 0.044 1 | 0.526 5 | 0.045 7 | 0.228 3 | 0.541 9 | 0.061 8 | 0.156 5 | 0.576 4 | 0.156 5 | |
| fr3_walking_static | 0.007 4 | 0.176 0 | 0.006 0 | 0.009 8 | 0.187 2 | 0.009 9 | 0.009 9 | 0.206 9 | 0.009 6 | 0.010 1 | 0.201 8 | 0.010 1 | |
| fr3_walking_halfsphere | 0.028 6 | 0.418 0 | 0.013 8 | 0.033 0 | 0.420 6 | 0.025 8 | 0.029 4 | 0.485 6 | 0.030 9 | 0.036 8 | 0.428 5 | 0.023 9 | |
Tab. 2 Results of RMSE of ATE, RPE in the rotation part (R.RPE) and RPE in the translation part (T.PRE) in ablation experiments
| 动态 程度 | 数据集 | 本文算法 | ORBSLAM2+YOLOv5s | ORB-SLAM2+几何约束 (含特征关联) | ORB-SLAM2+YOLOv5s+ 几何约束(不含特征关联) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ATE/m | R.RPE/(°) | T.RPE /m | ATE/m | R.RPE /(°) | T.RPE /m | ATE/m | R.RPE /(°) | T.RPE /m | ATE/m | R.RPE /(°) | T.RPE /m | ||
| 静态 | fr1_xyz | 0.009 9 | 0.387 9 | 0.006 0 | 0.010 2 | 0.405 7 | 0.006 2 | 0.009 9 | 0.398 4 | 0.006 0 | 0.010 1 | 0.386 9 | 0.005 9 |
| fr1_desk | 0.015 8 | 0.563 6 | 0.009 5 | 0.016 2 | 0.572 3 | 0.009 4 | 0.015 0 | 0.575 6 | 0.009 3 | 0.015 0 | 0.560 3 | 0.009 3 | |
| 低动态 | fr3_sitting_xyz | 0.009 3 | 0.315 9 | 0.008 5 | 0.009 5 | 0.314 4 | 0.008 6 | 0.017 2 | 0.328 2 | 0.009 9 | 0.015 1 | 0.327 5 | 0.009 6 |
| fr3_sitting_static | 0.007 0 | 0.165 2 | 0.005 3 | 0.005 8 | 0.150 3 | 0.004 4 | 0.006 1 | 0.150 3 | 0.004 5 | 0.006 0 | 0.151 6 | 0.004 7 | |
| 高动态 | fr3_walking_xyz | 0.014 3 | 0.385 4 | 0.011 5 | 0.015 1 | 0.389 3 | 0.016 1 | 0.242 3 | 0.600 4 | 0.133 3 | 0.018 0 | 0.404 5 | 0.022 7 |
| fr3_walking_rpy | 0.032 8 | 0.500 0 | 0.021 3 | 0.044 1 | 0.526 5 | 0.045 7 | 0.228 3 | 0.541 9 | 0.061 8 | 0.156 5 | 0.576 4 | 0.156 5 | |
| fr3_walking_static | 0.007 4 | 0.176 0 | 0.006 0 | 0.009 8 | 0.187 2 | 0.009 9 | 0.009 9 | 0.206 9 | 0.009 6 | 0.010 1 | 0.201 8 | 0.010 1 | |
| fr3_walking_halfsphere | 0.028 6 | 0.418 0 | 0.013 8 | 0.033 0 | 0.420 6 | 0.025 8 | 0.029 4 | 0.485 6 | 0.030 9 | 0.036 8 | 0.428 5 | 0.023 9 | |
动态 程度 | 数据集 | 本文系统 | Dynamic-VINS[ | DynaSLAM[ | DS-SLAM[ | ISC-SLAM[ | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| RMSE | STD | RMSE | STD | RMSE | STD | RMSE | STD | RMSE | STD | ||
| 低动态 | fr3_sitting_xyz | 0.009 6 | 0.004 8 | 0.015 0 | 0.006 5 | 0.020 5 | 0.009 8 | ||||
| fr3_sitting_static | 0.008 6 | 0.004 2 | 0.273 5 | 0.121 5 | |||||||
| 高动态 | fr3_walking_xyz | 0.014 3 | 0.006 7 | 0.048 6 | 0.015 0 | 0.008 6 | 0.024 7 | 0.016 1 | 0.014 8 | 0.007 7 | |
| fr3_walking_rpy | 0.032 8 | 0.017 3 | 0.062 9 | 0.035 0 | 0.043 7 | 0.444 2 | 0.235 0 | 0.035 8 | 0.020 7 | ||
| fr3_walking_static | 0.007 4 | 0.003 4 | 0.007 7 | 0.006 0 | 0.003 4 | 0.008 1 | 0.003 6 | 0.007 3 | 0.003 3 | ||
| fr3_walking_halfsphere | 0.028 6 | 0.014 2 | 0.060 8 | 0.025 0 | 0.016 1 | 0.030 3 | 0.015 9 | 0.030 3 | 0.014 6 | ||
Tab. 3 ATE comparison of proposed algorithm, DynaSLAM, DS-SLAM, Dynamic-VINS and ISC-SLAM
动态 程度 | 数据集 | 本文系统 | Dynamic-VINS[ | DynaSLAM[ | DS-SLAM[ | ISC-SLAM[ | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| RMSE | STD | RMSE | STD | RMSE | STD | RMSE | STD | RMSE | STD | ||
| 低动态 | fr3_sitting_xyz | 0.009 6 | 0.004 8 | 0.015 0 | 0.006 5 | 0.020 5 | 0.009 8 | ||||
| fr3_sitting_static | 0.008 6 | 0.004 2 | 0.273 5 | 0.121 5 | |||||||
| 高动态 | fr3_walking_xyz | 0.014 3 | 0.006 7 | 0.048 6 | 0.015 0 | 0.008 6 | 0.024 7 | 0.016 1 | 0.014 8 | 0.007 7 | |
| fr3_walking_rpy | 0.032 8 | 0.017 3 | 0.062 9 | 0.035 0 | 0.043 7 | 0.444 2 | 0.235 0 | 0.035 8 | 0.020 7 | ||
| fr3_walking_static | 0.007 4 | 0.003 4 | 0.007 7 | 0.006 0 | 0.003 4 | 0.008 1 | 0.003 6 | 0.007 3 | 0.003 3 | ||
| fr3_walking_halfsphere | 0.028 6 | 0.014 2 | 0.060 8 | 0.025 0 | 0.016 1 | 0.030 3 | 0.015 9 | 0.030 3 | 0.014 6 | ||
| 算法 | 定位丢失帧数 | ||
|---|---|---|---|
| fr3_w_xyz | fr3_w_rpy | fr3_ w_halfsphere | |
| ORB-SLAM2 | 151 | 0 | 209 |
| ORB-SLAM2+YOLOv5 | 0 | 123 | 14 |
| 本文算法 | 0 | 61 | 0 |
Tab. 4 Numbers of lost frames tracked by different algorithms
| 算法 | 定位丢失帧数 | ||
|---|---|---|---|
| fr3_w_xyz | fr3_w_rpy | fr3_ w_halfsphere | |
| ORB-SLAM2 | 151 | 0 | 209 |
| ORB-SLAM2+YOLOv5 | 0 | 123 | 14 |
| 本文算法 | 0 | 61 | 0 |
| 算法 | 平均跟踪时间 |
|---|---|
| ORB-SLAM2 | 36.78 |
| DynaSLAM | 578.74 |
| ISC-SLAM | 87.93 |
| DS-SLAM | 59.40 |
| 本文算法(TensorRT加速前) | 133.60 |
| 本文算法(TensorRT加速后) | 53.25 |
Tab. 5 Comparison of algorithm tracking time
| 算法 | 平均跟踪时间 |
|---|---|
| ORB-SLAM2 | 36.78 |
| DynaSLAM | 578.74 |
| ISC-SLAM | 87.93 |
| DS-SLAM | 59.40 |
| 本文算法(TensorRT加速前) | 133.60 |
| 本文算法(TensorRT加速后) | 53.25 |
| 1 | CADENA C, CARLONE L, CARRILLO H, et al. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age[J]. IEEE Transactions on Robotics, 2016, 32(6): 1309-1332. |
| 2 | DAVISON A J, REID I D, MOLTON N D, et al. MonoSLAM: real-time single camera SLAM[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 1052-1067. |
| 3 | FORSTER C, PIZZOLI M, SCARAMUZZA D. SVO: fast semi-direct monocular visual odometry[C]// Proceedings of the 2014 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2014: 15-22. |
| 4 | ENGEL J, KOLTUN V, CREMERS D. Direct sparse odometry[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 611-625. |
| 5 | MUR-ARTAL R, TARDÓS J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262. |
| 6 | SINGH G, WU M, DO M V, et al. Fast semantic-aware motion state detection for visual SLAM in dynamic environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 23014-23030. |
| 7 | ZHANG C, ZHANG R, JIN S, et al. PFD-SLAM: a new RGB-D SLAM for dynamic indoor environments based on non-prior semantic segmentation[J]. Remote Sensing, 2022, 14(10): No.2445. |
| 8 | SUN Y, LIU M, MENG M Q H. Improving RGB-D SLAM in dynamic environments: a motion removal approach[J]. Robotics and Autonomous Systems, 2017, 89: 110-122. |
| 9 | LI S, LEE D. RGB-D SLAM in dynamic environments using static point weighting[J]. IEEE Robotics and Automation Letters, 2017, 2(4): 2263-2270. |
| 10 | 黄泽霞,邵春莉. 深度学习下的视觉SLAM综述[J]. 机器人, 2023, 45(6):756-768. |
| HUANG Z X, SHAO C L. Survey of visual SLAM based on deep learning[J]. Robot, 2023, 45(6):756-768. | |
| 11 | 席志红,温家旭. 基于目标检测的室内动态场景定位与建图[J]. 计算机应用, 2022, 42(9): 2853-2857. |
| XI Z H, WEN J X. Indoor dynamic scene localization and mapping based on target detection[J]. Journal of Computer Applications, 2022, 42(9): 2853-2857. | |
| 12 | LIU J, LI X, LIU Y, et al. RGB-D inertial odometry for a resource-restricted robot in dynamic environments[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 9573-9580. |
| 13 | 刘丰宇,程向红,曹毅. 基于深度学习与特征点速度约束的室内动态SLAM方法[J]. 中国惯性技术学报, 2023, 31(5): 438-443. |
| LIU F Y, CHENG X H, CAO Y. An indoor dynamic SLAM method based on deep learning and feature point velocity constraint[J]. Journal of Chinese Inertial Technology, 2023, 31(5):438-443. | |
| 14 | BESCOS B, FÁCIL J M, CIVERA J, et al. DynaSLAM: tracking, mapping and inpainting in dynamic scenes[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 4076-4083. |
| 15 | HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397. |
| 16 | YU C, LIU Z, LIU X J, et al. DS-SLAM: a semantic visual SLAM towards dynamic environments[C]// Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2018: 1168-1174. |
| 17 | BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. |
| 18 | 肖田邹子,周小博,罗欣,等. 动态环境下结合实例分割与聚类的鲁棒RGB-D SLAM系统[J]. 计算机应用, 2023, 43(4): 1220-1225. |
| XIAO T Z Z, ZHOU X B, LUO X, et al. Robust RGB-D SLAM system incorporating instance segmentation and clustering in dynamic environment[J]. Journal of Computer Applications, 2023, 43(4): 1220-1225. | |
| 19 | XU Z, RONG Z, WU Y. A survey: which features are required for dynamic visual simultaneous localization and mapping?[J]. Visual Computing for Industry, Biomedicine, and Art, 2021, 4: No.20. |
| 20 | Ultralytics. YOLOv5[EB/OL]. [2024-01-24].. |
| 21 | LIN T Y, MAIRE M, BELONGIE S,et al. Microsoft COCO: common objects in context[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8693. Cham: Springer, 2014:740-755. |
| 22 | STURM J, ENGELHARD N, ENDRES F, et al. A benchmark for the evaluation of RGB-D SLAM systems[C]// Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2012: 573-580. |
| 23 | GRUPP M. EVO: Python package for the evaluation of odometry and SLAM[EB/OL]. [2024-01-24].. |
| [1] | Sheng YANG, Yan LI. Contrastive knowledge distillation method for object detection [J]. Journal of Computer Applications, 2025, 45(2): 354-361. |
| [2] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
| [3] | Yeheng LI, Guangsheng LUO, Qianmin SU. Logo detection algorithm based on improved YOLOv5 [J]. Journal of Computer Applications, 2024, 44(8): 2580-2587. |
| [4] | Yingjun ZHANG, Niuniu LI, Binhong XIE, Rui ZHANG, Wangdong LU. Semi-supervised object detection framework guided by curriculum learning [J]. Journal of Computer Applications, 2024, 44(8): 2326-2333. |
| [5] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
| [6] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
| [7] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. |
| [8] | Yaping DENG, Yingjiang LI. Review of YOLO algorithm and its applications to object detection in autonomous driving scenes [J]. Journal of Computer Applications, 2024, 44(6): 1949-1958. |
| [9] | Huantong GENG, Zhenyu LIU, Jun JIANG, Zichen FAN, Jiaxing LI. Embedded road crack detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2024, 44(5): 1613-1618. |
| [10] | Xiaogang SONG, Dongdong ZHANG, Pengfei ZHANG, Li LIANG, Xinhong HEI. Real-time object detection algorithm for complex construction environments [J]. Journal of Computer Applications, 2024, 44(5): 1605-1612. |
| [11] | Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. |
| [12] | Wei WANG, Chunhui ZHAO, Xinyao TANG, Liugang XI. 3D vehicle detection with adaptive horizon line constraints [J]. Journal of Computer Applications, 2024, 44(3): 909-915. |
| [13] | Yuqiu LI, Liping HOU, Jian XUE, Ke LYU, Yong WANG. Remote sensing image recommendation method based on content interpretation [J]. Journal of Computer Applications, 2024, 44(3): 722-731. |
| [14] | Xinye LI, Yening HOU, Yinghui KONG, Zhiqi YAN. Few-shot object detection combining feature fusion and enhanced attention [J]. Journal of Computer Applications, 2024, 44(3): 745-751. |
| [15] | Fuqin DENG, Huifeng GUAN, Chaoen TAN, Lanhui FU, Hongmin WANG, Tinlun LAM, Jianmin ZHANG. Multi-robot reinforcement learning path planning method based on request-response communication mechanism and local attention mechanism [J]. Journal of Computer Applications, 2024, 44(2): 432-438. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
