Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (3): 928-936.DOI: 10.11772/j.issn.1001-9081.2024030370

• Advanced computing • Previous Articles     Next Articles

Dynamic UAV path planning based on modified whale optimization algorithm

Xingwang WANG1, Qingyang ZHANG1(), Shouyong JIANG2, Yongquan DONG1   

  1. 1.School of Computer Science and Technology,Jiangsu Normal University,Xuzhou Jiangsu 221116,China
    2.School of Automation,Central South University,Changsha Hunan 410083,China
  • Received:2024-04-02 Revised:2024-04-26 Accepted:2024-04-28 Online:2024-05-16 Published:2025-03-10
  • Contact: Qingyang ZHANG
  • About author:WANG Xingwang, born in 1998, M. S. candidate. His research interests include evolutionary algorithm, intelligent algorithms.
    JIANG Shouyong, born in 1988, Ph. D., professor. His research interests include evolutionary computing, intelligent algorithms.
    DONG Yongquan, born in 1979, Ph. D., professor. His research interests include data mining, swarm intelligence.
  • Supported by:
    National Natural Science Foundation of China(62006103);China Scholarship Council Program(202310090064);Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX22_2858);Xuzhou Basic Research Program(KC23025);Royal Society International Exchanges Scheme (IEC\NSFC\211404)

基于改进鲸鱼优化算法的动态无人机路径规划

王兴旺1, 张清杨1(), 姜守勇2, 董永权1   

  1. 1.江苏师范大学 计算机科学与技术学院,江苏 徐州 221116
    2.中南大学 自动化学院,长沙 410083
  • 通讯作者: 张清杨
  • 作者简介:王兴旺(1998—),男,江苏徐州人,硕士研究生,主要研究方向:进化算法、智能算法
    姜守勇(1988—),男,湖北襄阳人,教授,博士,CCF会员,主要研究方向:进化计算、智能算法
    董永权(1979—),男,江苏宿迁人,教授,博士,CCF会员,主要研究方向:数据挖掘、群体智能。
  • 基金资助:
    国家自然科学基金资助项目(62006103);国家留学基金委项目(202310090064);江苏省研究生科研与实践创新计划项目(KYCX22_2858);徐州基础研究青年科技人才项目(KC23025);英国皇家学会国际交流计划项目(IEC\NSFC\211404)

Abstract:

A dynamic Unmanned Aerial Vehicle (UAV) path planning method based on Modified Whale Optimization Algorithm (MWOA) was proposed for the problem of UAV path planning in environments with complex terrains. Firstly, by analyzing the mountain terrain, dynamic targets, and threat zones, a three-dimensional dynamic environment and a UAV route model were established. Secondly, an adaptive step size Gaussian walk strategy was proposed to balance the algorithm’s abilities of global exploration and local exploitation. Finally, a supplementary correction strategy was proposed to correct the optimal individual in the population, and combined with differential evolution strategy, the population was avoided from falling into local optimum while improving convergence accuracy of the algorithm. To verify the effectiveness of MWOA, MWOA and intelligent algorithms such as Whale Optimization Algorithm (WOA), and Artificial Hummingbird Algorithm (AHA) were used to solve the CEC2022 test functions, and validated in designed UAV dynamic environment model. The comparative analysis of simulation results shows that compared with the traditional WOA, MWOA improves the convergence accuracy by 6.1%, and reduces the standard deviation by 44.7%. The above proves that the proposed MWOA has faster convergence and higher accuracy, and can handle UAV path planning problems effectively.

Key words: Whale Optimization Algorithm (WOA), adaptive step Gaussian walk, supplementary correction strategy, differential evolution, Unmanned Aerial Vehicle (UAV), dynamic path planning

摘要:

针对复杂地形环境下的无人机(UAV)路径规划问题,提出一种基于改进鲸鱼优化算法(MWOA)的动态UAV路径规划方法。首先,通过解析山体地形、动态目标和威胁区,建立三维动态环境与UAV航路模型;其次,提出一种自适应步长高斯游走策略,并将该策略用于平衡算法的全局探索与局部发掘的能力;最后,提出一种辅助修正策略对种群最优个体进行修正,并结合差分进化策略,在避免种群陷入局部最优的同时提高算法的收敛精度。为验证MWOA的有效性,使用MWOA与鲸鱼优化算法(WOA)、人工蜂鸟算法(AHA)等智能算法求解CEC2022测试函数,并在设计的UAV动态环境模型中进行验证。仿真结果对比分析表明,与WOA相比,MWOA的收敛精度提高了6.1%,标准差减小了44.7%。可见,所提MWOA收敛更快且精度更高,能有效处理UAV路径规划问题。

关键词: 鲸鱼优化算法, 自适应步长高斯游走, 辅助修正策略, 差分进化, 无人机, 动态路径规划

CLC Number: