Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (2): 594-600.DOI: 10.11772/j.issn.1001-9081.2024030302
• Multimedia computing and computer simulation • Previous Articles
Benchen YANG(), Haoran LI, Haibo JIN
Received:
2024-03-21
Revised:
2024-06-10
Accepted:
2024-06-13
Online:
2024-07-31
Published:
2025-02-10
Contact:
Benchen YANG
About author:
LI Haoran, born in 2000, M. S. candidate. His research interests include multi-focus image fusion, image super-resolution reconstruction, image enhancement.Supported by:
通讯作者:
杨本臣
作者简介:
李浩然(2000—),男,辽宁铁岭人,硕士研究生,CCF会员,主要研究方向:多聚焦图像融合、图像超分辨率重建、图像增强基金资助:
CLC Number:
Benchen YANG, Haoran LI, Haibo JIN. Multi-focus image fusion network with cascade fusion and enhanced reconstruction[J]. Journal of Computer Applications, 2025, 45(2): 594-600.
杨本臣, 李浩然, 金海波. 级联融合与增强重建的多聚焦图像融合网络[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 594-600.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024030302
数据集 | 方法 | AG | GLD | MSD | LIF |
---|---|---|---|---|---|
Lytro | DWT | 2.892 015 | 14.317 518 | 0.110 454 | 0.410 464 |
GF | 2.886 802 | 14.287 715 | 0.110 801 | 0.407 880 | |
DSIFT | 2.890 632 | 14.306 651 | 0.110 830 | 0.407 591 | |
NSCT | 2.876 968 | 14.244 632 | 0.110 496 | 0.410 090 | |
IFCNN | 2.891 815 | 14.316 606 | 0.110 749 | 0.407 939 | |
SESF-Fuse | 2.888 225 | 14.294 464 | 0.110 864 | 0.407 565 | |
U2Fusion | 2.286 115 | 11.307 678 | 0.099 932 | 0.427 310 | |
MFF-GAN | 2.726 301 | 13.505 882 | 0.106 499 | 0.411 883 | |
CasNet | 3.008 855 | 14.905 202 | 0.111 582 | 0.406 753 | |
MFFW | DWT | 3.497 837 | 17.372 400 | 0.119 985 | 0.414 033 |
GF | 3.446 860 | 17.131 368 | 0.118 574 | 0.413 859 | |
DSIFT | 3.458 350 | 17.185 319 | 0.118 444 | 0.412 197 | |
NSCT | 3.429 046 | 17.044 636 | 0.120 315 | 0.414 269 | |
IFCNN | 3.421 395 | 17.005 448 | 0.121 998 | 0.410 692 | |
SESF-Fuse | 3.508 006 | 17.433 581 | 0.119 363 | 0.407 991 | |
U2Fusion | 2.633 200 | 13.077 647 | 0.108 532 | 0.431 687 | |
MFF-GAN | 3.365 119 | 16.768 212 | 0.115 540 | 0.404 708 | |
CasNet | 3.622 536 | 18.007 483 | 0.123 359 | 0.415 832 | |
grayscale | DWT | 3.920 240 | 19.336 019 | 0.154 317 | 0.457 913 |
GF | 3.828 959 | 18.869 385 | 0.153 370 | 0.457 169 | |
DSIFT | 3.848 095 | 18.965 958 | 0.153 655 | 0.456 716 | |
NSCT | 3.834 118 | 18.900 831 | 0.154 379 | 0.457 600 | |
IFCNN | 3.869 484 | 19.087 379 | 0.154 687 | 0.456 762 | |
SESF-Fuse | 3.830 764 | 18.880 392 | 0.153 642 | 0.456 556 | |
U2Fusion | 2.951 674 | 14.522 842 | 0.140 666 | 0.472 399 | |
MFF-GAN | 3.870 514 | 19.118 118 | 0.149 254 | 0.459 194 | |
CasNet | 4.137 110 | 20.435 776 | 0.158 180 | 0.451 321 | |
MFI-WHU | DWT | 4.147 645 | 20.625 134 | 0.100 404 | 0.482 206 |
GF | 4.131 233 | 20.532 169 | 0.100 373 | 0.482 510 | |
DSIFT | 4.099 983 | 20.403 363 | 0.100 261 | 0.483 256 | |
NSCT | 4.141 690 | 20.589 193 | 0.100 430 | 0.482 193 | |
IFCNN | 4.110 629 | 20.464 973 | 0.100 824 | 0.480 513 | |
SESF-Fuse | 4.098 331 | 20.392 291 | 0.100 376 | 0.482 165 | |
U2Fusion | 2.906 110 | 14.379 773 | 0.091 892 | 0.500 723 | |
MFF-GAN | 3.883 448 | 19.301 371 | 0.098 425 | 0.479 748 | |
CasNet | 4.422 203 | 21.971 969 | 0.101 070 | 0.480 715 |
Tab. 1 Comparison experimental results of nine methods
数据集 | 方法 | AG | GLD | MSD | LIF |
---|---|---|---|---|---|
Lytro | DWT | 2.892 015 | 14.317 518 | 0.110 454 | 0.410 464 |
GF | 2.886 802 | 14.287 715 | 0.110 801 | 0.407 880 | |
DSIFT | 2.890 632 | 14.306 651 | 0.110 830 | 0.407 591 | |
NSCT | 2.876 968 | 14.244 632 | 0.110 496 | 0.410 090 | |
IFCNN | 2.891 815 | 14.316 606 | 0.110 749 | 0.407 939 | |
SESF-Fuse | 2.888 225 | 14.294 464 | 0.110 864 | 0.407 565 | |
U2Fusion | 2.286 115 | 11.307 678 | 0.099 932 | 0.427 310 | |
MFF-GAN | 2.726 301 | 13.505 882 | 0.106 499 | 0.411 883 | |
CasNet | 3.008 855 | 14.905 202 | 0.111 582 | 0.406 753 | |
MFFW | DWT | 3.497 837 | 17.372 400 | 0.119 985 | 0.414 033 |
GF | 3.446 860 | 17.131 368 | 0.118 574 | 0.413 859 | |
DSIFT | 3.458 350 | 17.185 319 | 0.118 444 | 0.412 197 | |
NSCT | 3.429 046 | 17.044 636 | 0.120 315 | 0.414 269 | |
IFCNN | 3.421 395 | 17.005 448 | 0.121 998 | 0.410 692 | |
SESF-Fuse | 3.508 006 | 17.433 581 | 0.119 363 | 0.407 991 | |
U2Fusion | 2.633 200 | 13.077 647 | 0.108 532 | 0.431 687 | |
MFF-GAN | 3.365 119 | 16.768 212 | 0.115 540 | 0.404 708 | |
CasNet | 3.622 536 | 18.007 483 | 0.123 359 | 0.415 832 | |
grayscale | DWT | 3.920 240 | 19.336 019 | 0.154 317 | 0.457 913 |
GF | 3.828 959 | 18.869 385 | 0.153 370 | 0.457 169 | |
DSIFT | 3.848 095 | 18.965 958 | 0.153 655 | 0.456 716 | |
NSCT | 3.834 118 | 18.900 831 | 0.154 379 | 0.457 600 | |
IFCNN | 3.869 484 | 19.087 379 | 0.154 687 | 0.456 762 | |
SESF-Fuse | 3.830 764 | 18.880 392 | 0.153 642 | 0.456 556 | |
U2Fusion | 2.951 674 | 14.522 842 | 0.140 666 | 0.472 399 | |
MFF-GAN | 3.870 514 | 19.118 118 | 0.149 254 | 0.459 194 | |
CasNet | 4.137 110 | 20.435 776 | 0.158 180 | 0.451 321 | |
MFI-WHU | DWT | 4.147 645 | 20.625 134 | 0.100 404 | 0.482 206 |
GF | 4.131 233 | 20.532 169 | 0.100 373 | 0.482 510 | |
DSIFT | 4.099 983 | 20.403 363 | 0.100 261 | 0.483 256 | |
NSCT | 4.141 690 | 20.589 193 | 0.100 430 | 0.482 193 | |
IFCNN | 4.110 629 | 20.464 973 | 0.100 824 | 0.480 513 | |
SESF-Fuse | 4.098 331 | 20.392 291 | 0.100 376 | 0.482 165 | |
U2Fusion | 2.906 110 | 14.379 773 | 0.091 892 | 0.500 723 | |
MFF-GAN | 3.883 448 | 19.301 371 | 0.098 425 | 0.479 748 | |
CasNet | 4.422 203 | 21.971 969 | 0.101 070 | 0.480 715 |
编号 | 采样方式 | CSL | FEL | FRL | AG | GLD | MSD | LIF |
---|---|---|---|---|---|---|---|---|
1 | 分隔卷积 | √ | √ | √ | 3.008 855 | 14.905 202 | 0.111 582 | 0.406 753 |
2 | 卷积池化 | √ | √ | √ | 2.836 003 | 14.032 692 | 0.112 648 | 0.408 859 |
3 | 分隔卷积 | √ | × | √ | 2.881 604 | 14.299 073 | 0.110 952 | 0.407 592 |
4 | 分隔卷积 | √ | √ | × | 2.885 072 | 14.279 921 | 0.111 756 | 0.409 389 |
5 | 分隔卷积 | √ | × | × | 2.757 684 | 13.642 471 | 0.109 382 | 0.413 323 |
Tab. 2 Influence of different layer combinations on network fusion performance
编号 | 采样方式 | CSL | FEL | FRL | AG | GLD | MSD | LIF |
---|---|---|---|---|---|---|---|---|
1 | 分隔卷积 | √ | √ | √ | 3.008 855 | 14.905 202 | 0.111 582 | 0.406 753 |
2 | 卷积池化 | √ | √ | √ | 2.836 003 | 14.032 692 | 0.112 648 | 0.408 859 |
3 | 分隔卷积 | √ | × | √ | 2.881 604 | 14.299 073 | 0.110 952 | 0.407 592 |
4 | 分隔卷积 | √ | √ | × | 2.885 072 | 14.279 921 | 0.111 756 | 0.409 389 |
5 | 分隔卷积 | √ | × | × | 2.757 684 | 13.642 471 | 0.109 382 | 0.413 323 |
维度 | AG | GLD | MSD | LIF |
---|---|---|---|---|
32 | 2.961 190 | 14.348 444 | 0.111 700 | 0.408 259 |
64 | 3.008 855 | 14.905 202 | 0.111 582 | 0.406 753 |
128 | 3.033 247 | 15.032 255 | 0.111 764 | 0.406 228 |
Tab. 3 Influence of spatial dimension on network fusion performance
维度 | AG | GLD | MSD | LIF |
---|---|---|---|---|
32 | 2.961 190 | 14.348 444 | 0.111 700 | 0.408 259 |
64 | 3.008 855 | 14.905 202 | 0.111 582 | 0.406 753 |
128 | 3.033 247 | 15.032 255 | 0.111 764 | 0.406 228 |
堆叠数 | AG | GLD | MSD | LIF |
---|---|---|---|---|
2 | 3.008 855 | 14.905 202 | 0.111 582 | 0.406 753 |
4 | 3.021 685 | 15.009 049 | 0.112 588 | 0.408 615 |
8 | 2.898 623 | 14.348 444 | 0.111 700 | 0.407 768 |
Tab. 4 Influence of stacking layers on network fusion performance
堆叠数 | AG | GLD | MSD | LIF |
---|---|---|---|---|
2 | 3.008 855 | 14.905 202 | 0.111 582 | 0.406 753 |
4 | 3.021 685 | 15.009 049 | 0.112 588 | 0.408 615 |
8 | 2.898 623 | 14.348 444 | 0.111 700 | 0.407 768 |
1 | LIU Y, WANG L, CHENG J, et al. Multi-focus image fusion: a survey of the state of the art[J]. Information Fusion, 2020, 64: 71-91. |
2 | ZHOU Y, YU L, ZHI C, et al. A survey of multi-focus image fusion methods[J]. Applied Sciences, 2022, 12(12): No.6281. |
3 | LI H, MANJUNATH B S, MITRA S K. Multisensor image fusion using the wavelet transform[J]. Graphical Models and Image Processing, 1995, 57(3): 235-245. |
4 | LIU Y, LIU S, WANG Z. Multi-focus image fusion with dense SIFT[J]. Information Fusion, 2015, 23: 139-155. |
5 | LIU Y, CHEN X, PENG H, et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 2017, 36: 191-207. |
6 | ZHAO W, WANG D, LU H. Multi-focus image fusion with a natural enhancement via a joint multi-level deeply supervised convolutional neural network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(4): 1102-1115. |
7 | ZHANG H, LE Z, SHAO Z, et al. MFF-GAN: an unsupervised generative adversarial network with adaptive and gradient joint constraints for multi-focus image fusion[J]. Information Fusion, 2021, 66: 40-53. |
8 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2672-2680. |
9 | ZHANG X. Deep learning-based multi-focus image fusion: a survey and a comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 4819-4838. |
10 | ZHANG Q, GUO B L. Multifocus image fusion using the nonsubsampled contourlet transform[J]. Signal Processing, 2009, 89(7): 1334-1346. |
11 | WANG W, CHANG F. A multi-focus image fusion method based on Laplacian pyramid[J]. Journal of Computers, 2011, 6(12): 2559-2566. |
12 | CUI G, FENG H, XU Z, et al. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition[J]. Optics Communications, 2015, 341: 199-209. |
13 | LI S, KANG X, HU J. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875. |
14 | ZHAN K, KONG L, LIU B, et al. Multimodal image seamless fusion[J]. Journal of Electronic Imaging, 2019, 28(2): No.023027. |
15 | MA B, ZHU Y, YIN X, et al. SESF-Fuse: an unsupervised deep model for multi-focus image fusion[J]. Neural Computing and Applications, 2021, 33(11): 5793-5804. |
16 | ZHANG Y, LIU Y, SUN P, et al. IFCNN: a general image fusion framework based on convolutional neural network[J]. Information Fusion, 2020, 54: 99-118. |
17 | XU H, MA J, JIANG J, et al. U2Fusion: a unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 502-518. |
18 | WANG Z, CHEN J, HOI S C H. Deep learning for image super-resolution: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3365-3387. |
19 | DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307. |
20 | KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1646-1654. |
21 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |
22 | LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1132-1140. |
23 | GENDY G, HE G, SABOR N. Lightweight image super-resolution based on deep learning: state-of-the-art and future directions[J]. Information Fusion, 2023, 94: 284-310. |
24 | ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient Transformer for high-resolution image restoration[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5718-5729. |
25 | LU Z, LI J, LIU H, et al. Transformer for single image super-resolution[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2022: 456-465. |
26 | KINGAD D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. [2023-11-03].. |
27 | EVERINGHAM M, ESLAMI S M A, VAN GOOL L, et al. The PASCAL visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98-136. |
28 | WANG Y, XU S, LIU J, et al. MFIF-GAN: a new generative adversarial network for multi-focus image fusion[J]. Signal Processing: Image Communication, 2021, 96: No.116295. |
29 | NEJATI M, SAMAVI S, SHIRANI S. Multi-focus image fusion using dictionary-based sparse representation[J]. Information Fusion, 2015, 25: 72-84. |
30 | XU S, WEI X, ZHANG C, et al. MFFW: a new dataset for multi-focus image fusion[EB/OL]. [2023-02-12].. |
31 | JADON A, PATIL A, JADON S. A comprehensive survey of regression based loss functions for time series forecasting[C]// Proceedings of the 2024 International Conference on Data Management, Analytics and Innovation, LNNS 998. Cham: Springer, 2024: 117-147. |
32 | WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. |
33 | MA H, LIAO Q, ZHANG J, et al. An α-matte boundary defocus model-based cascaded network for multi-focus image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 8668-8679. |
34 | BAI X, ZHOU F, XUE B. Noise-suppressed image enhancement using multiscale top-hat selection transform through region extraction[J]. Applied Optics, 2012, 51(3): 338-347. |
[1] | Binhong XIE, Wanyin GAO, Wangdong LU, Yingjun ZHANG, Rui ZHANG. Dense object counting network with few-shot similarity matching feature enhancement [J]. Journal of Computer Applications, 2025, 45(2): 403-410. |
[2] | Dongmei XIE, Xinye BIAN, Lianfei YU, Wenbo LIU, Ziling WANG, Zhijian QU, Jiafeng YU. DeepsORF: coding sORFs prediction method based on graph coding with improved flow attention [J]. Journal of Computer Applications, 2025, 45(2): 546-555. |
[3] | Dixin WANG, Jiahao WANG, Min LI, Hao CHEN, Guangyao HU, Yu GONG. Abnormal attack detection for underwater acoustic communication network [J]. Journal of Computer Applications, 2025, 45(2): 526-533. |
[4] | Qijian CAI, Wei TAN. Semantic graph enhanced multi-modal recommendation algorithm [J]. Journal of Computer Applications, 2025, 45(2): 421-427. |
[5] | Lifang WANG, Jingshuang WU, Pengliang YIN, Lihua HU. Action recognition algorithm based on attention mechanism and energy function [J]. Journal of Computer Applications, 2025, 45(1): 234-239. |
[6] | Pengcheng SONG, Lijun GUO, Rong ZHANG. Weakly supervised video anomaly detection with local-global temporal dependency [J]. Journal of Computer Applications, 2025, 45(1): 240-246. |
[7] | Jie XU, Yong ZHONG, Yang WANG, Changfu ZHANG, Guanci YANG. Facial attribute estimation and expression recognition based on contextual channel attention mechanism [J]. Journal of Computer Applications, 2025, 45(1): 253-260. |
[8] | Junying CHEN, Shijie GUO, Lingling CHEN. Lightweight human pose estimation based on decoupled attention and ghost convolution [J]. Journal of Computer Applications, 2025, 45(1): 223-233. |
[9] | Jianpeng HU, Lichen ZHANG. Deep spatio-temporal network model for multi-time step wind power prediction [J]. Journal of Computer Applications, 2025, 45(1): 98-105. |
[10] | Ying HUANG, Changsheng LI, Hui PENG, Su LIU. Dual-branch network guided by local entropy for dynamic scene high dynamic range imaging [J]. Journal of Computer Applications, 2025, 45(1): 204-213. |
[11] | Jialin ZHANG, Qinghua REN, Qirong MAO. Speaker verification system utilizing global-local feature dependency for anti-spoofing [J]. Journal of Computer Applications, 2025, 45(1): 308-317. |
[12] | Liang ZHU, Jingzhe MU, Hongqiang ZUO, Jingzhong GU, Fubao ZHU. Location privacy-preserving recommendation scheme based on federated graph neural network [J]. Journal of Computer Applications, 2025, 45(1): 136-143. |
[13] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[14] | Liehong REN, Lyuwen HUANG, Xu TIAN, Fei DUAN. Multivariate long-term series forecasting method with DFT-based frequency-sensitive dual-branch Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2739-2746. |
[15] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||