Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (7): 2269-2277.DOI: 10.11772/j.issn.1001-9081.2024071008
• Data science and technology • Previous Articles Next Articles
Ruifeng BAI, Guanglei GOU(), Lang WEN, Wanyu MIAO
Received:
2024-07-17
Revised:
2024-09-26
Accepted:
2024-10-09
Online:
2025-07-10
Published:
2025-07-10
Contact:
Guanglei GOU
About author:
BAI Ruifeng, born in 1999, M. S. candidate. His research interests include granular computing, few-shot learning.Supported by:
通讯作者:
苟光磊
作者简介:
白瑞峰(1999—),男,河南商丘人,硕士研究生,CCF会员,主要研究方向:粒计算、小样本学习基金资助:
CLC Number:
Ruifeng BAI, Guanglei GOU, Lang WEN, Wanyu MIAO. Granular-ball prototypical network for few-shot image classification[J]. Journal of Computer Applications, 2025, 45(7): 2269-2277.
白瑞峰, 苟光磊, 文浪, 缪宛谕. 基于粒球原型网络的小样本图像分类方法[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2269-2277.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024071008
模型 | Backbone | 5-way 1-shot | 5-way 5-shot |
---|---|---|---|
MatchNet[ | Conv-4 | 43.56 | 55.31 |
MAML[ | Conv-4 | 48.70 | 63.11 |
ProtoNet[ | Conv-4 | 49.20 | 66.20 |
RelationNe[ | Conv-4 | 50.44 | 65.32 |
SSL[ | Conv-4 | 50.60 | 65.71 |
ECMT[ | Conv-4 | 49.07 | 65.73 |
BOIL[ | Conv-4 | 49.61 | 65.44 |
Bayesian[ | Conv-4 | 50.02 | 65.48 |
LSTAL-ProtoNet[ | Conv-4 | 51.23 | 67.95 |
DW-ProtoNet[ | Conv-4 | 51.08 | 67.51 |
CGRN[ | Conv-4 | 50.85 | 64.13 |
HFFCR[ | Conv-4 | 51.79 | 65.74 |
SSL-ProtoNet[ | Conv-4 | 51.95 | 68.44 |
本文模型 | Conv-4 | 52.24 | 68.75 |
Tab. 1 Classification results on MiniImageNet dataset
模型 | Backbone | 5-way 1-shot | 5-way 5-shot |
---|---|---|---|
MatchNet[ | Conv-4 | 43.56 | 55.31 |
MAML[ | Conv-4 | 48.70 | 63.11 |
ProtoNet[ | Conv-4 | 49.20 | 66.20 |
RelationNe[ | Conv-4 | 50.44 | 65.32 |
SSL[ | Conv-4 | 50.60 | 65.71 |
ECMT[ | Conv-4 | 49.07 | 65.73 |
BOIL[ | Conv-4 | 49.61 | 65.44 |
Bayesian[ | Conv-4 | 50.02 | 65.48 |
LSTAL-ProtoNet[ | Conv-4 | 51.23 | 67.95 |
DW-ProtoNet[ | Conv-4 | 51.08 | 67.51 |
CGRN[ | Conv-4 | 50.85 | 64.13 |
HFFCR[ | Conv-4 | 51.79 | 65.74 |
SSL-ProtoNet[ | Conv-4 | 51.95 | 68.44 |
本文模型 | Conv-4 | 52.24 | 68.75 |
模型 | Backbone | 5-way 1-shot | 5-way 5-shot |
---|---|---|---|
MatchNet[ | Conv-4 | 42.10 | 50.04 |
MAML[ | Conv-4 | 51.67 | 70.30 |
ProtoNet[ | Conv-4 | 50.32 | 69.42 |
RelationNet[ | Conv-4 | 53.18 | 69.38 |
SSL[ | Conv-4 | 52.93 | 71.71 |
ECMT[ | Conv-4 | 48.19 | 65.50 |
BOIL[ | Conv-4 | 49.35 | 69.37 |
LSTAL-ProtoNet[ | Conv-4 | 50.45 | 70.28 |
DW-ProtoNet[ | Conv-4 | 50.25 | 70.14 |
CGRN[ | Conv-4 | 53.54 | 70.53 |
SSL-ProtoNet[ | Conv-4 | 53.64 | 71.64 |
本文模型 | Conv-4 | 53.79 | 71.90 |
Tab. 2 Classification results on TieredImageNet dataset
模型 | Backbone | 5-way 1-shot | 5-way 5-shot |
---|---|---|---|
MatchNet[ | Conv-4 | 42.10 | 50.04 |
MAML[ | Conv-4 | 51.67 | 70.30 |
ProtoNet[ | Conv-4 | 50.32 | 69.42 |
RelationNet[ | Conv-4 | 53.18 | 69.38 |
SSL[ | Conv-4 | 52.93 | 71.71 |
ECMT[ | Conv-4 | 48.19 | 65.50 |
BOIL[ | Conv-4 | 49.35 | 69.37 |
LSTAL-ProtoNet[ | Conv-4 | 50.45 | 70.28 |
DW-ProtoNet[ | Conv-4 | 50.25 | 70.14 |
CGRN[ | Conv-4 | 53.54 | 70.53 |
SSL-ProtoNet[ | Conv-4 | 53.64 | 71.64 |
本文模型 | Conv-4 | 53.79 | 71.90 |
模型 | 5-way 1-shot | 5-way 5-shot |
---|---|---|
Ball k-means | 45.26 | 60.99 |
Ball k-means+① | 49.56 | 67.47 |
Ball k-means+② | 45.67 | 61.26 |
Ball k-means+③ | 46.28 | 61.66 |
Ball k-means+①+② | 51.63 | 68.16 |
Ball k-means+①+③ | 51.91 | 68.40 |
本文模型 | 52.24 | 68.75 |
Tab. 3 Ablation experimental results on MiniImageNet dataset
模型 | 5-way 1-shot | 5-way 5-shot |
---|---|---|
Ball k-means | 45.26 | 60.99 |
Ball k-means+① | 49.56 | 67.47 |
Ball k-means+② | 45.67 | 61.26 |
Ball k-means+③ | 46.28 | 61.66 |
Ball k-means+①+② | 51.63 | 68.16 |
Ball k-means+①+③ | 51.91 | 68.40 |
本文模型 | 52.24 | 68.75 |
模型 | 5-way 1-shot | 5-way 5-shot |
---|---|---|
Ball k-means +① | 49.56 | 67.47 |
Ball k-means +①+(a) | 50.12 | 67.68 |
Ball k-means +①+(b) | 51.02 | 68.03 |
Ball k-means +①+(a)(c) | 51.52 | 68.23 |
Ball k-means +①+③ | 51.91 | 68.40 |
Tab. 4 Method ③ ablation experimental results on MiniImageNet dataset
模型 | 5-way 1-shot | 5-way 5-shot |
---|---|---|
Ball k-means +① | 49.56 | 67.47 |
Ball k-means +①+(a) | 50.12 | 67.68 |
Ball k-means +①+(b) | 51.02 | 68.03 |
Ball k-means +①+(a)(c) | 51.52 | 68.23 |
Ball k-means +①+③ | 51.91 | 68.40 |
5-way 1-shot | 5-way 5-shot | |||
---|---|---|---|---|
损失 | 准确率/% | 损失 | 准确率/% | |
0.40 | 1.433 | 49.41 | 0.934 7 | 66.62 |
0.48 | 1.421 | 49.31 | 0.921 3 | 67.05 |
0.50 | 1.419 | 49.89 | 0.919 7 | 67.32 |
0.52 | 1.387 | 50.56 | 0.920 3 | 67.58 |
0.56 | 1.457 | 49.42 | 0.924 7 | 67.04 |
0.60 | 1.384 | 50.32 | 0.911 4 | 67.44 |
0.005*epoch | 1.216 | 52.24 | 0.890 5 | 68.34 |
0.4+0.001*epoch | 1.310 | 51.35 | 0.899 8 | 68.17 |
0.6-0.001*epoch | 1.375 | 50.92 | 0.903 5 | 67.99 |
0.004*epoch | 1.298 | 51.74 | 0.881 5 | 68.75 |
0.003*epoch | 1.314 | 51.28 | 0.911 8 | 67.54 |
Tab. 5 Comparison experimental results of loss and accuracy under different α
5-way 1-shot | 5-way 5-shot | |||
---|---|---|---|---|
损失 | 准确率/% | 损失 | 准确率/% | |
0.40 | 1.433 | 49.41 | 0.934 7 | 66.62 |
0.48 | 1.421 | 49.31 | 0.921 3 | 67.05 |
0.50 | 1.419 | 49.89 | 0.919 7 | 67.32 |
0.52 | 1.387 | 50.56 | 0.920 3 | 67.58 |
0.56 | 1.457 | 49.42 | 0.924 7 | 67.04 |
0.60 | 1.384 | 50.32 | 0.911 4 | 67.44 |
0.005*epoch | 1.216 | 52.24 | 0.890 5 | 68.34 |
0.4+0.001*epoch | 1.310 | 51.35 | 0.899 8 | 68.17 |
0.6-0.001*epoch | 1.375 | 50.92 | 0.903 5 | 67.99 |
0.004*epoch | 1.298 | 51.74 | 0.881 5 | 68.75 |
0.003*epoch | 1.314 | 51.28 | 0.911 8 | 67.54 |
模型 | 浮点运算量/MFLOPs | 时间/h | 准确率/% | 时间复杂度 | |||
---|---|---|---|---|---|---|---|
1shot | 5shot | 1shot | 5shot | 1shot | 5shot | ||
ProtoNet[ | 3.47 | 8.60 | 1.4 | 1.7 | 49.20 | 66.20 | O(s+kq) |
Ball k-means[ | 8.15 | 12.79 | 2.0 | 2.2 | 45.26 | 60.99 | O(s+2kq+2k+q+tk²+tkq) |
SSL-ProtoNet[ | 19.60 | 24.30 | 6.9 | 7.3 | 49.23 | 68.44 | — |
本文模型 | 7.70 | 12.34 | 1.8 | 2.0 | 52.24 | 68.75 | O(s+2kq+2k+q+tk²+tkq) |
Tab. 6 Computational complexity comparison on MiniImageNet dataset
模型 | 浮点运算量/MFLOPs | 时间/h | 准确率/% | 时间复杂度 | |||
---|---|---|---|---|---|---|---|
1shot | 5shot | 1shot | 5shot | 1shot | 5shot | ||
ProtoNet[ | 3.47 | 8.60 | 1.4 | 1.7 | 49.20 | 66.20 | O(s+kq) |
Ball k-means[ | 8.15 | 12.79 | 2.0 | 2.2 | 45.26 | 60.99 | O(s+2kq+2k+q+tk²+tkq) |
SSL-ProtoNet[ | 19.60 | 24.30 | 6.9 | 7.3 | 49.23 | 68.44 | — |
本文模型 | 7.70 | 12.34 | 1.8 | 2.0 | 52.24 | 68.75 | O(s+2kq+2k+q+tk²+tkq) |
[1] | ZHANG A, LIPTON Z C, LI M, et al. Dive into deep learning [EB/OL]. [2024-03-20]. . |
[2] | ZENG W, XIAO Z Y. Few-shot learning based on deep learning: a survey [J]. Mathematical Biosciences and Engineering, 2024, 21(1): 679-711. |
[3] | WANG Y, YAO Q, KWOK J T, et al. Generalizing from a few examples: a survey on few-shot learning [J]. ACM Computing Surveys, 2020, 53(3): No.63. |
[4] | 彭云聪,秦小林,张力戈.面向图像分类的小样本学习算法综述[J].计算机科学,2022, 49(5): 1-9. |
PENG Y C, QIN X L, ZHANG L G. Survey on few-shot learning algorithms for image classification [J]. Computer Science, 2022, 49(5): 1-9. | |
[5] | SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 4080-4090. |
[6] | JI Z, CHAI X, YU Y, et al. Improved prototypical networks for few-shot learning [J]. Pattern Recognition Letters, 2020, 140: 81-87. |
[7] | 华超,刘向阳.基于密度加权原型网络的小样本学习算法[J].计算机技术与发展,2022, 32(9): 8-13. |
HUA C, LIU X Y. Few-shot learning based on density-weighted prototypical network [J]. Computer Technology and Development, 2022, 32(9): 8-13. | |
[8] | XIAO Y, JIN Y, HAO K. Adaptive prototypical networks with label words and joint representation learning for few-shot relation classification [J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(3): 1406-1417. |
[9] | LIM J Y, LIM K M, LEE C P, et al. SSL-ProtoNet: Self-Supervised Learning Prototypical Networks for few-shot learning [J]. Expert Systems with Applications, 2024, 238(Pt E): No.122173. |
[10] | REN M, TRIANTAFILLOU E, RAVI S, et al. Meta-learning for semi-supervised few-shot classification [EB/OL]. [2024-03-20]. . |
[11] | LIU X, LIU P, ZONG L. Transductive prototypical network for few-shot classification [C]// Proceedings of the 2020 IEEE International Conference on Image Processing. Piscataway: IEEE, 2020: 1671-1675. |
[12] | XIA S, PENG D, MENG D, et al. Ball k-means: fast adaptive clustering with no bounds [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 87-99. |
[13] | XIA S, ZHENG S, WANG G, et al. Granular ball sampling for noisy label classification or imbalanced classification [J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(4): 2144-2155. |
[14] | XIA S, XIE J, WANG G. An adaptive granularity clustering method based on hyper-ball [EB/OL]. [2024-05-22]. . |
[15] | XIA S, LIU Y, DING X, et al. Granular ball computing classifiers for efficient, scalable and robust learning [J]. Information Sciences, 2019, 483: 136-152. |
[16] | 南通大学.基于原型网络的小样本垃圾图像分类方法:202210159436.X [P]. 2022-05-27. |
Nantong University. Prototypical network-based few-shot classification method for trash images: 202210159436.X [P]. 2022-05-27. | |
[17] | LI X, YANG X, MA Z, et al. Deep metric learning for few-shot image classification: a review of recent developments [J]. Pattern Recognition, 2023, 138: No.109381. |
[18] | VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning [C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 3637-3645. |
[19] | CHEN W Y, LIU Y C, KIRA Z, et al. A closer look at few-shot classification [EB/OL]. [2024-05-22]. . |
[20] | GAO F, LUO X, YANG Z, et al. Label smoothing and task-adaptive loss function based on prototype network for few-shot learning [J]. Neural Networks, 2022, 156: 39-48. |
[21] | HU W, ZHONG J, XIA Y, et al. Adaptive prototype network with common and discriminative representation learning for few-shot relation extraction [C]// Proceedings of the 2023 International Conference on Advanced Data Mining and Applications, LNCS 14179. Cham: Springer, 2023: 63-77. |
[22] | FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks [C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 1126-1135. |
[23] | NICHOL A, ACHIAM J, SCHULMAN J. On first-order meta-learning algorithms [EB/OL]. [2024-05-22]. . |
[24] | RAGHU A, RAGHU M, BENGIO S, et al. Rapid learning or feature reuse? towards understanding the effectiveness of MAML [EB/OL]. [2024-05-22]. . |
[25] | RAJESWARAN A, FINN C, KAKADE S M, et al. Meta-learning with implicit gradients [EB/OL]. [2024-02-25]. . |
[26] | RAJASEGARAN J, KHAN S, HAYAT M, et al. iTAML: an incremental task-agnostic meta-learning approach [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13588-13597. |
[27] | AHMED M, SERAJ R, ISLAM S M S. The k-means algorithm: a comprehensive survey and performance evaluation [J]. Electronics, 2020, 9(8): No.1295. |
[28] | XIA S, WANG G, GAO X. Granular ball computing: an efficient, robust, and interpretable adaptive multi-granularity representation and computation method [EB/OL]. [2024-05-22]. . |
[29] | XIA S, WU S, CHEN X, et al. GRRS: accurate and efficient neighborhood rough set for feature selection [J]. IEEE Transactions on Knowledge and Data Engineering, 2022. |
[30] | XIA S, WANG C, WANG G, et al. A unified granular-ball learning model of Pawlak rough set and neighborhood rough set [EB/OL]. [2024-05-25]. . |
[31] | XIE, JIANG, et al. An efficient spectral clustering algorithm based on granular-ball [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(9): 9743-9753. |
[32] | SUNG F, YANG Y, ZHANG L, et al. Learning to compare: relation network for few-shot learning [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1199-1208. |
[33] | RAVICHANDRAN A, BHOTIKA R, SOATTO S. Few-shot learning with embedded class models and shot-free meta training [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 331-339. |
[34] | OH J, YOO H, KIM C H, et al. BOIL: towards representation change for few-shot learning [EB/OL]. [2024-05-25]. . |
[35] | PATACCHIOLA M, TURNER J, CROWLEY E J, et al. Bayesian meta-learning for the few-shot setting via deep kernels [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 16108-16118. |
[36] | JIA X, SU Y, ZHAO H. Few-shot learning via relation network based on coarse-grained granulation [J]. Applied Intelligence, 2023, 53(1): 996-1008. |
[37] | JIA X, MAO Y, PAN Z, et al. Few-shot learning based on hierarchical feature fusion via relation networks [J]. International Journal of Approximate Reasoning, 2024, 170: No.109186. |
[1] | Shuangshuang CUI, Hongzhi WANG, Jiahao ZHU, Hao WU. Two-stage data selection method for classifier with low energy consumption and high performance [J]. Journal of Computer Applications, 2025, 45(6): 1703-1711. |
[2] | Biqing ZENG, Guangbin ZHONG, James Zhiqing WEN. Few-shot named entity recognition based on decomposed fuzzy span [J]. Journal of Computer Applications, 2025, 45(5): 1504-1510. |
[3] | Yiqin YAN, Chuan LUO, Tianrui LI, Hongmei CHEN. Cross-domain few-shot classification model based on relation network and Vision Transformer [J]. Journal of Computer Applications, 2025, 45(4): 1095-1103. |
[4] | Kun FU, Shicong YING, Tingting ZHENG, Jiajie QU, Jingyuan CUI, Jianwei LI. Graph data augmentation method for few-shot node classification [J]. Journal of Computer Applications, 2025, 45(2): 392-402. |
[5] | Binhong XIE, Wanyin GAO, Wangdong LU, Yingjun ZHANG, Rui ZHANG. Dense object counting network with few-shot similarity matching feature enhancement [J]. Journal of Computer Applications, 2025, 45(2): 403-410. |
[6] | Xuewen YAN, Zhangjin HUANG. Few-shot image classification method based on contrast learning [J]. Journal of Computer Applications, 2025, 45(2): 383-391. |
[7] | Xinyan YU, Cheng ZENG, Qian WANG, Peng HE, Xiaoyu DING. Few-shot news topic classification method based on knowledge enhancement and prompt learning [J]. Journal of Computer Applications, 2024, 44(6): 1767-1774. |
[8] | Li XIE, Weiping SHU, Junjie GENG, Qiong WANG, Hailin YANG. Few-shot cervical cell classification combining weighted prototype and adaptive tensor subspace [J]. Journal of Computer Applications, 2024, 44(10): 3200-3208. |
[9] | Xiaomin ZHOU, Fei TENG, Yi ZHANG. Automatic international classification of diseases coding model based on meta-network [J]. Journal of Computer Applications, 2023, 43(9): 2721-2726. |
[10] | Bihui YU, Xingye CAI, Jingxuan WEI. Few-shot text classification method based on prompt learning [J]. Journal of Computer Applications, 2023, 43(9): 2735-2740. |
[11] | Junjian JIANG, Dawei LIU, Yifan LIU, Yougui REN, Zhibin ZHAO. Few-shot object detection algorithm based on Siamese network [J]. Journal of Computer Applications, 2023, 43(8): 2325-2329. |
[12] | Renjie XU, Baodi LIU, Kai ZHANG, Weifeng LIU. Model agnostic meta learning algorithm based on Bayesian weight function [J]. Journal of Computer Applications, 2022, 42(3): 708-712. |
[13] | DU Yan, LYU Liangfu, JIAO Yichen. Fuzzy prototype network based on fuzzy reasoning [J]. Journal of Computer Applications, 2021, 41(7): 1885-1890. |
[14] | TIAN Zhihong, ZHAO Jindong. Overview of blockchain consensus mechanism for internet of things [J]. Journal of Computer Applications, 2021, 41(4): 917-929. |
[15] | HAN Zhonghua, BI Kaiyuan, SI Wen, LYU Zhe. Clustering by fast search and find of density peaks based on spectrum analysis [J]. Journal of Computer Applications, 2019, 39(2): 409-413. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||