Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (10): 3074-3082.DOI: 10.11772/j.issn.1001-9081.2024091307
• Artificial intelligence • Previous Articles
Yongping WANG1(), Yao LIU2, Xiaolin ZHANG2, Jingyu WANG2, Lixin LIU3
Received:
2024-09-06
Revised:
2025-02-23
Accepted:
2025-02-27
Online:
2025-03-26
Published:
2025-10-10
Contact:
Yongping WANG
About author:
王永平(1984—),女,内蒙古赤峰人,讲师,硕士,主要研究方向:人工智能安全、大数据隐私保护 imust_wyp@163.com通讯作者:
王永平
作者简介:
王永平(1984—),女,内蒙古赤峰人,讲师,硕士,主要研究方向:人工智能安全、大数据隐私保护基金资助:
CLC Number:
Yongping WANG, Yao LIU, Xiaolin ZHANG, Jingyu WANG, Lixin LIU. Multimodal adversarial example generation method for Chinese text classification[J]. Journal of Computer Applications, 2025, 45(10): 3074-3082.
王永平, 刘垚, 张晓琳, 王静宇, 刘立新. 针对中文文本分类的多模态对抗样本生成方法[J]. 《计算机应用》唯一官方网站, 2025, 45(10): 3074-3082.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024091307
样本类型 | 样本 | 标签 | 概率/% |
---|---|---|---|
原始样本1 | 屏幕上有个色点,可能人品好吧,在上方边框哪里,不影响使用。装GHOST系统很麻烦的,不太懂电脑的人要费力了。建议DM格式化后再装系统吧,不然会有个BUG出来,进不去 | 0/消极 | 83 |
对抗样本1 | 屏幕上有个色点,可能人品好吧,在上方边框哪里,不影响使用。装GHOST系统很麻烦的,不太懂电脑的人要费力了。建议DM格式化后再装系统吧,不然会有个BUG出来,进步u去 | 1/积极 | 61 |
原始样本2 | 香港确诊第四例甲型流感病例 | 5/时政 | 100 |
对抗样本2 | 香缸ang确珍第四例甲型流感病例 | 9/科技 | 80 |
Tab. 1 Display of adversarial examples
样本类型 | 样本 | 标签 | 概率/% |
---|---|---|---|
原始样本1 | 屏幕上有个色点,可能人品好吧,在上方边框哪里,不影响使用。装GHOST系统很麻烦的,不太懂电脑的人要费力了。建议DM格式化后再装系统吧,不然会有个BUG出来,进不去 | 0/消极 | 83 |
对抗样本1 | 屏幕上有个色点,可能人品好吧,在上方边框哪里,不影响使用。装GHOST系统很麻烦的,不太懂电脑的人要费力了。建议DM格式化后再装系统吧,不然会有个BUG出来,进步u去 | 1/积极 | 61 |
原始样本2 | 香港确诊第四例甲型流感病例 | 5/时政 | 100 |
对抗样本2 | 香缸ang确珍第四例甲型流感病例 | 9/科技 | 80 |
原始样本 | 对抗样本 |
---|---|
系统很麻烦 | 系通ong很麻烦 |
不合理 | 步u合理 |
交通方便 | 交通放ang便 |
Tab. 2 Application examples of homophonic rhyme strategy
原始样本 | 对抗样本 |
---|---|
系统很麻烦 | 系通ong很麻烦 |
不合理 | 步u合理 |
交通方便 | 交通放ang便 |
数据集 | 类别数 | 样本数 | 平均 词数 | ||
---|---|---|---|---|---|
训练集 | 测试集 | 验证集 | |||
线上购物评论 | 2 | 62 000 | 6 000 | 6 000 | 30.18 |
酒店评论 | 2 | 8 000 | 1 000 | 1 000 | 69.76 |
垃圾短信 | 2 | 7 000 | 1 000 | 1 000 | 6.25 |
THUNews | 10 | 50 000 | 5 000 | 5 000 | 9.33 |
Tab. 3 Overview of datasets
数据集 | 类别数 | 样本数 | 平均 词数 | ||
---|---|---|---|---|---|
训练集 | 测试集 | 验证集 | |||
线上购物评论 | 2 | 62 000 | 6 000 | 6 000 | 30.18 |
酒店评论 | 2 | 8 000 | 1 000 | 1 000 | 69.76 |
垃圾短信 | 2 | 7 000 | 1 000 | 1 000 | 6.25 |
THUNews | 10 | 50 000 | 5 000 | 5 000 | 9.33 |
攻击方法 | 线上购物评论 | 酒店评论 | 垃圾短信 | THUNews | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
攻击 成功率/% | 困惑度 | 扰动率/% | 攻击 成功率/% | 困惑度 | 扰动率/% | 攻击 成功率/% | 困惑度 | 扰动率/% | 攻击 成功率/% | 困惑度 | 扰动率/% | |
CWordAttacker | 32.7 | 29.6 | 17.4 | 36.2 | 28.7 | 15.4 | 17.5 | 42.0 | 19.3 | 27.2 | 46.8 | 19.0 |
Liu-Composite | 59.1 | 31.6 | 17.5 | 62.3 | 29.4 | 15.2 | 29.8 | 43.5 | 18.9 | 39.4 | 47.1 | 18.8 |
ZH-Deceiver | 62.4 | 32.4 | 16.4 | 64.3 | 30.2 | 13.8 | 32.3 | 43.8 | 18.4 | 42.5 | 47.7 | 18.1 |
CMAttack | 63.7 | 32.9 | 16.6 | 65.8 | 30.6 | 15.0 | 34.6 | 44.5 | 18.0 | 44.2 | 48.3 | 17.9 |
Tab. 4 Effect of attacks on BERT model
攻击方法 | 线上购物评论 | 酒店评论 | 垃圾短信 | THUNews | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
攻击 成功率/% | 困惑度 | 扰动率/% | 攻击 成功率/% | 困惑度 | 扰动率/% | 攻击 成功率/% | 困惑度 | 扰动率/% | 攻击 成功率/% | 困惑度 | 扰动率/% | |
CWordAttacker | 32.7 | 29.6 | 17.4 | 36.2 | 28.7 | 15.4 | 17.5 | 42.0 | 19.3 | 27.2 | 46.8 | 19.0 |
Liu-Composite | 59.1 | 31.6 | 17.5 | 62.3 | 29.4 | 15.2 | 29.8 | 43.5 | 18.9 | 39.4 | 47.1 | 18.8 |
ZH-Deceiver | 62.4 | 32.4 | 16.4 | 64.3 | 30.2 | 13.8 | 32.3 | 43.8 | 18.4 | 42.5 | 47.7 | 18.1 |
CMAttack | 63.7 | 32.9 | 16.6 | 65.8 | 30.6 | 15.0 | 34.6 | 44.5 | 18.0 | 44.2 | 48.3 | 17.9 |
攻击方法 | 线上购物评论 | 酒店评论 | 垃圾短信 | THUNews | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
攻击 成功率/% | 困惑度 | 扰动率/% | 攻击 成功率/% | 困惑度 | 扰动率/% | 攻击 成功率/% | 困惑度 | 扰动率/% | 攻击 成功率/% | 困惑度 | 扰动率/% | |
CWordAttacker | 30.4 | 29.3 | 18.6 | 32.7 | 27.6 | 17.2 | 16.0 | 39.9 | 19.6 | 25.8 | 42.3 | 19.7 |
Liu-Composite | 56.3 | 31.0 | 18.5 | 59.2 | 28.5 | 16.8 | 29.4 | 41.5 | 18.9 | 37.5 | 43.5 | 19.3 |
ZH-Deceiver | 58.2 | 31.5 | 17.2 | 60.8 | 29.4 | 15.1 | 30.7 | 41.6 | 18.7 | 40.0 | 43.9 | 18.7 |
CMAttack | 59.6 | 32.2 | 17.7 | 62.3 | 29.6 | 16.2 | 33.2 | 43.1 | 18.2 | 42.7 | 45.8 | 18.3 |
Tab. 5 Effect of attacks on RoBERTa model
攻击方法 | 线上购物评论 | 酒店评论 | 垃圾短信 | THUNews | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
攻击 成功率/% | 困惑度 | 扰动率/% | 攻击 成功率/% | 困惑度 | 扰动率/% | 攻击 成功率/% | 困惑度 | 扰动率/% | 攻击 成功率/% | 困惑度 | 扰动率/% | |
CWordAttacker | 30.4 | 29.3 | 18.6 | 32.7 | 27.6 | 17.2 | 16.0 | 39.9 | 19.6 | 25.8 | 42.3 | 19.7 |
Liu-Composite | 56.3 | 31.0 | 18.5 | 59.2 | 28.5 | 16.8 | 29.4 | 41.5 | 18.9 | 37.5 | 43.5 | 19.3 |
ZH-Deceiver | 58.2 | 31.5 | 17.2 | 60.8 | 29.4 | 15.1 | 30.7 | 41.6 | 18.7 | 40.0 | 43.9 | 18.7 |
CMAttack | 59.6 | 32.2 | 17.7 | 62.3 | 29.6 | 16.2 | 33.2 | 43.1 | 18.2 | 42.7 | 45.8 | 18.3 |
样本 类别 | 线上购物评论 | 酒店评论 | 垃圾短信 | THUNews | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
分类准确率/% | 流畅性 | 分类准确率/% | 流畅性 | 分类准确率/% | 流畅性 | 分类准确率/% | 流畅性 | |||||||||
BERT | RoBERTa | 人工 | BERT | RoBERTa | 人工 | BERT | RoBERTa | 人工 | BERT | RoBERTa | 人工 | |||||
原始 | 93.7 | 94.2 | 95.2 | 4.7 | 94.5 | 95.0 | 97.0 | 4.8 | 97.0 | 97.4 | 98.7 | 4.1 | 93.4 | 93.6 | 95.0 | 4.5 |
对抗 | 34.0 | 38.1 | 94.0 | 4.2 | 32.3 | 36.6 | 94.6 | 4.0 | 63.4 | 65.1 | 96.7 | 3.8 | 52.2 | 53.6 | 92.8 | 3.9 |
Tab. 6 Results of human evaluation
样本 类别 | 线上购物评论 | 酒店评论 | 垃圾短信 | THUNews | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
分类准确率/% | 流畅性 | 分类准确率/% | 流畅性 | 分类准确率/% | 流畅性 | 分类准确率/% | 流畅性 | |||||||||
BERT | RoBERTa | 人工 | BERT | RoBERTa | 人工 | BERT | RoBERTa | 人工 | BERT | RoBERTa | 人工 | |||||
原始 | 93.7 | 94.2 | 95.2 | 4.7 | 94.5 | 95.0 | 97.0 | 4.8 | 97.0 | 97.4 | 98.7 | 4.1 | 93.4 | 93.6 | 95.0 | 4.5 |
对抗 | 34.0 | 38.1 | 94.0 | 4.2 | 32.3 | 36.6 | 94.6 | 4.0 | 63.4 | 65.1 | 96.7 | 3.8 | 52.2 | 53.6 | 92.8 | 3.9 |
方法 | 线上购物评论 | 酒店评论 | 垃圾短信 | THUNews | ||||
---|---|---|---|---|---|---|---|---|
攻击成功率 | 扰动率 | 攻击成功率 | 扰动率 | 攻击成功率 | 扰动率 | 攻击成功率 | 扰动率 | |
DS方法 | 60.4 | 17.0 | 64.0 | 16.1 | 32.5 | 18.3 | 40.7 | 18.6 |
本文方法 | 63.7 | 16.6 | 65.8 | 15.0 | 34.6 | 18.0 | 44.2 | 17.9 |
Tab. 7 Ablation experimental results of important word components on BERT model
方法 | 线上购物评论 | 酒店评论 | 垃圾短信 | THUNews | ||||
---|---|---|---|---|---|---|---|---|
攻击成功率 | 扰动率 | 攻击成功率 | 扰动率 | 攻击成功率 | 扰动率 | 攻击成功率 | 扰动率 | |
DS方法 | 60.4 | 17.0 | 64.0 | 16.1 | 32.5 | 18.3 | 40.7 | 18.6 |
本文方法 | 63.7 | 16.6 | 65.8 | 15.0 | 34.6 | 18.0 | 44.2 | 17.9 |
方法 | 线上购物评论 | 酒店评论 | 垃圾短信 | THUNews | ||||
---|---|---|---|---|---|---|---|---|
攻击成功率 | 扰动率 | 攻击成功率 | 扰动率 | 攻击成功率 | 扰动率 | 攻击成功率 | 扰动率 | |
CMAttack | 63.5 | 16.6 | 65.8 | 15.0 | 33.2 | 18.2 | 44.2 | 17.9 |
CMAttack(-MUSE) | 63.7 | 18.7 | 66.2 | 18.5 | 33.4 | 18.6 | 44.2 | 18.4 |
Tab. 8 Ablation experimental results of MUSE constraint on BERT model
方法 | 线上购物评论 | 酒店评论 | 垃圾短信 | THUNews | ||||
---|---|---|---|---|---|---|---|---|
攻击成功率 | 扰动率 | 攻击成功率 | 扰动率 | 攻击成功率 | 扰动率 | 攻击成功率 | 扰动率 | |
CMAttack | 63.5 | 16.6 | 65.8 | 15.0 | 33.2 | 18.2 | 44.2 | 17.9 |
CMAttack(-MUSE) | 63.7 | 18.7 | 66.2 | 18.5 | 33.4 | 18.6 | 44.2 | 18.4 |
策略 | 线上购物评论 | 酒店评论 | 垃圾短信 | THUNews | ||||
---|---|---|---|---|---|---|---|---|
攻击成功率 | 扰动率 | 攻击成功率 | 扰动率 | 攻击成功率 | 扰动率 | 攻击成功率 | 扰动率 | |
同音字替换 | 34.1 | 17.5 | 41.0 | 16.1 | 13.0 | 19.7 | 17.4 | 19.8 |
同音字韵母 | 35.3 | 14.5 | 41.8 | 11.3 | 14.6 | 17.5 | 18.7 | 17.6 |
Tab. 9 Ablation experimental results of homophonic rhyme strategy on BERT model
策略 | 线上购物评论 | 酒店评论 | 垃圾短信 | THUNews | ||||
---|---|---|---|---|---|---|---|---|
攻击成功率 | 扰动率 | 攻击成功率 | 扰动率 | 攻击成功率 | 扰动率 | 攻击成功率 | 扰动率 | |
同音字替换 | 34.1 | 17.5 | 41.0 | 16.1 | 13.0 | 19.7 | 17.4 | 19.8 |
同音字韵母 | 35.3 | 14.5 | 41.8 | 11.3 | 14.6 | 17.5 | 18.7 | 17.6 |
模型 | 分类准确率 | 攻击成功率 | 扰动率 | |||
---|---|---|---|---|---|---|
AT前 | AT后 | AT前 | AT后 | AT前 | AT后 | |
BERT | 93.7 | 95.0 | 63.7 | 46.5 | 16.6 | 17.9 |
RoBERTa | 94.2 | 95.4 | 59.6 | 42.7 | 17.7 | 19.1 |
Tab. 10 Influence of adversarial training on model classification accuracy and robustness
模型 | 分类准确率 | 攻击成功率 | 扰动率 | |||
---|---|---|---|---|---|---|
AT前 | AT后 | AT前 | AT后 | AT前 | AT后 | |
BERT | 93.7 | 95.0 | 63.7 | 46.5 | 16.6 | 17.9 |
RoBERTa | 94.2 | 95.4 | 59.6 | 42.7 | 17.7 | 19.1 |
[1] | ZHAO H, CHANG Y K, WANG W J. Research on robustness of deep neural networks based data preprocessing techniques[J]. International Journal of Network Security, 2022, 24(2): 243-252. |
[2] | GOYAL S, DODDAPANENI S, KHAPRA M M, et al. A survey of adversarial defenses and robustness in NLP[J]. ACM Computing Surveys, 2023, 55(14s): No.332. |
[3] | SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[EB/OL]. [2024-08-10].. |
[4] | 严莹子,王小平,庄葛巍,等. 基于深度强化学习的恶意软件混淆对抗样本生成[J]. 计算机应用与软件, 2022, 39(2):315-323, 349. |
YAN Y Z, WANG X P, ZHUANG G W, et al. Obfuscated code adversarial sample generation method based on deep reinforcement learning[J]. Computer Applications and Software, 2022, 39(2):315-323, 349. | |
[5] | GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[EB/OL]. [2023-08-10].. |
[6] | PAPERNOT N, McDANIEL P, JHA S, et al. The limitations of deep learning in adversarial settings[C]// Proceedings of the 2016 1st IEEE European Symposium on Security and Privacy. Piscataway: IEEE, 2016: 372-387. |
[7] | CARLINI N, WAGNER D. Towards evaluating the robustness of neural networks[C]// Proceedings of the 2017 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2017: 39-57. |
[8] | MOOSAVI-DEZFOOLI S M, FAWZI A, FROSSARD P. DeepFool: a simple and accurate method to fool deep neural networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2574-2582. |
[9] | 李宇航,杨玉丽,马垚,等. 基于BERT模型的文本对抗样本生成方法[J]. 计算机应用, 2023, 43(10):3093-3098. |
LI Y H, YANG Y L, MA Y, et al. Text adversarial example generation method based on BERT model[J]. Journal of Computer Applications, 2023, 43(10): 3093-3098. | |
[10] | XING X, JIN Z, JIN D, et al. Tasty burgers, soggy fries: probing aspect robustness in aspect-based sentiment analysis[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 3594-3605. |
[11] | GAO J, LANCHANTIN J, SOFFA M L, et al. Black-box generation of adversarial text sequences to evade deep learning classifiers[C]// Proceedings of the 2018 IEEE Symposium on Security and Privacy Workshops. Piscataway: IEEE, 2018: 50-56. |
[12] | JIN D, JIN Z, ZHOU J T, et al. Is BERT really robust? a strong baseline for natural language attack on text classification and entailment[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 8018-8025. |
[13] | ZANG Y, QI F, YANG C, et al. Word-level textual adversarial attacking as combinatorial optimization[EB/OL]. [2024-08-05].. |
[14] | LEE D, MOON S, LEE J, et al. Query-efficient and scalable black-box adversarial attacks on discrete sequential data via Bayesian optimization[C]// Proceedings of the 39th International Conference on Machine Learning. New York: JMLR.org, 2022: 12478-12497. |
[15] | 王文琦,汪润,王丽娜,等. 面向中文文本倾向性分类的对抗样本生成方法[J]. 软件学报, 2019, 30(8):2415-2427. |
WANG W Q, WANG R, WANG L N, et al. Adversarial examples generation approach for tendency classification on Chinese texts[J]. Journal of Software, 2019, 30(8): 2415-2427. | |
[16] | 仝鑫,王罗娜,王润正,等. 面向中文文本分类的词级对抗样本生成方法[J]. 信息网络安全, 2020, 20(9):12-16. |
TONG X, WANG L N, WANG R Z, et al. A generation method of word-level adversarial samples for Chinese text classification[J]. Netinfo Security, 2020, 20(9): 12-16. | |
[17] | NUO C, CHANG G Q, GAO H, et al. WordChange: adversarial examples generation approach for Chinese text classification[J]. IEEE Access, 2020, 8: 79561-79572. |
[18] | LIU H, CAI C, QI Y. Expanding scope: adapting English adversarial attacks to Chinese[C]// Proceedings of the 3rd Workshop on Trustworthy Natural Language Processing. Stroudsburg: ACL, 2023:276-286. |
[19] | 李相葛,罗红,孙岩. 基于汉语特征的中文对抗样本生成方法[J]. 软件学报, 2023, 34(11): 5143-5161. |
LI X G, LUO H, SUN Y. Adversarial sample generation method based on Chinese features[J]. Journal of Software, 2023, 34(11): 5143-5161. | |
[20] | GE Z, HU H, ZHAO T, et al. Reading is not believing: a multimodal adversarial attacker for Chinese-NLP model[J]. Computers and Security, 2023, 125: No.103052. |
[21] | HARBECKE D, ALT C. Considering likelihood in NLP classification explanations with occlusion and language modeling[C]// Proceedings of the 58th Annual Meeting of the Association for Computation Linguistics: Student Research Workshop. Stroudsburg: ACL, 2020: 111-117. |
[22] | QI F, YANG C, LIU Z, et al. OpenHowNet: an open sememe-based lexical knowledge base[EB/OL]. [2024-07-20].. |
[23] | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. |
[24] | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. [2024-07-20].. |
[25] | KUSNER M J, SUN Y, KOLKIN N I, et al. From word embeddings to document distances[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 957-966. |
[26] | VADILLO J, SANTANA R. On the human evaluation of universal audio adversarial perturbations[J]. Computers and Security, 2022, 112: No.102495. |
[27] | 宋逸飞,柳毅. 基于数据增强和标签噪声的快速对抗训练方法[J]. 计算机应用, 2024, 44(12): 3798-3807.SONG Y F, LIU Y. Fast adversarial training method based on data augmentation and label noise[J]. Journal of Computer Applications, 2024, 44(12): 3798-3807.This work is partially supported by National Natural Science Foundation of China (62466045); Inner Mongolia Natural Science Foundation (2023 MS 06012); Fundamental Research Funds for the Colleges and Universities directly under the Inner Mongolia Autonomous Region (2023RCTD027, 2024QNJS047).WANG Yongping, in born 1984, M. S., lecturer. Her research interests include artificial intelligence security, big data privacy protection.LIU Yao, in born 1999, M. S. candidate. Her research interests include artificial intelligence security.ZHANG Xiaolin, in born 1966, Ph. D., professor. Her research interests include artificial intelligence security, big data privacy protection.WANG Jingyu, in born 1976, Ph. D., professor. His research interests include big data and security, blockchain and security.LIU Lixin, in born 1983, Ph. candidateD., lecturer. Her research interests include data security, protectionprivacy, blockchain, database. |
[1] | Jinyang HUANG, Fengqi CUI, Changxiu MA, Wendong FAN, Meng LI, Jingyu LI, Xiao SUN, Linsheng HUANG, Zhi LIU. Sleep apnea detection based on universal wristband [J]. Journal of Computer Applications, 2025, 45(9): 3045-3056. |
[2] | Hongjun ZHANG, Gaojun PAN, Hao YE, Yubin LU, Yiheng MIAO. Multi-source heterogeneous data analysis method combining deep learning and tensor decomposition [J]. Journal of Computer Applications, 2025, 45(9): 2838-2847. |
[3] | Jin LI, Liqun LIU. SAR and visible image fusion based on residual Swin Transformer [J]. Journal of Computer Applications, 2025, 45(9): 2949-2956. |
[4] | Bing YIN, Zhenhua LING, Yin LIN, Changfeng XI, Ying LIU. Emotion recognition method compatible with missing modal reasoning [J]. Journal of Computer Applications, 2025, 45(9): 2764-2772. |
[5] | Panfeng JING, Yudong LIANG, Chaowei LI, Junru GUO, Jinyu GUO. Semi-supervised image dehazing algorithm based on teacher-student learning [J]. Journal of Computer Applications, 2025, 45(9): 2975-2983. |
[6] | Weigang LI, Jiale SHAO, Zhiqiang TIAN. Point cloud classification and segmentation network based on dual attention mechanism and multi-scale fusion [J]. Journal of Computer Applications, 2025, 45(9): 3003-3010. |
[7] | Zhixiong XU, Bo LI, Xiaoyong BIAN, Qiren HU. Adversarial sample embedded attention U-Net for 3D medical image segmentation [J]. Journal of Computer Applications, 2025, 45(9): 3011-3016. |
[8] | Zhiyuan WANG, Tao PENG, Jie YANG. Integrating internal and external data for out-of-distribution detection training and testing [J]. Journal of Computer Applications, 2025, 45(8): 2497-2506. |
[9] | Yanhua LIAO, Yuanxia YAN, Wenlin PAN. Multi-target detection algorithm for traffic intersection images based on YOLOv9 [J]. Journal of Computer Applications, 2025, 45(8): 2555-2565. |
[10] | Shuo ZHANG, Guokai SUN, Yuan ZHUANG, Xiaoyu FENG, Jingzhi WANG. Dynamic detection method of eclipse attacks for blockchain node analysis [J]. Journal of Computer Applications, 2025, 45(8): 2428-2436. |
[11] | Lina GE, Mingyu WANG, Lei TIAN. Review of research on efficiency of federated learning [J]. Journal of Computer Applications, 2025, 45(8): 2387-2398. |
[12] | Peng PENG, Ziting CAI, Wenling LIU, Caihua CHEN, Wei ZENG, Baolai HUANG. Speech emotion recognition method based on hybrid Siamese network with CNN and bidirectional GRU [J]. Journal of Computer Applications, 2025, 45(8): 2515-2521. |
[13] | Yihan WANG, Chong LU, Zhongyuan CHEN. Multimodal sentiment analysis model with cross-modal text information enhancement [J]. Journal of Computer Applications, 2025, 45(7): 2237-2244. |
[14] | Jinxian SUO, Liping ZHANG, Sheng YAN, Dongqi WANG, Yawen ZHANG. Review of interpretable deep knowledge tracing methods [J]. Journal of Computer Applications, 2025, 45(7): 2043-2055. |
[15] | Zhenzhou WANG, Fangfang GUO, Jingfang SU, He SU, Jianchao WANG. Robustness optimization method of visual model for intelligent inspection [J]. Journal of Computer Applications, 2025, 45(7): 2361-2368. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||