Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (11): 3730-3738.DOI: 10.11772/j.issn.1001-9081.2024111612
• Frontier and comprehensive applications • Previous Articles
Maozu GUO1, Zheng CUI1, Lingling ZHAO2(
), Qingyu ZHANG1
Received:2024-11-14
Revised:2025-03-05
Accepted:2025-03-18
Online:2025-04-02
Published:2025-11-10
Contact:
Lingling ZHAO
About author:GUO Maozu, born in 1966, Ph. D., professor. His research interests include intelligent construction, smart city.Supported by:通讯作者:
赵玲玲
作者简介:郭茂祖(1966—),男,山东德州人,教授,博士生导师,博士,主要研究方向:智能建造、智慧城市基金资助:CLC Number:
Maozu GUO, Zheng CUI, Lingling ZHAO, Qingyu ZHANG. Frequency domain attention-based method for structural seismic response prediction[J]. Journal of Computer Applications, 2025, 45(11): 3730-3738.
郭茂祖, 崔正, 赵玲玲, 张庆宇. 基于频域注意力的结构地震响应预测方法[J]. 《计算机应用》唯一官方网站, 2025, 45(11): 3730-3738.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024111612
| 解释器 | 编译语言环境 | 所依赖包 |
|---|---|---|
| Anaconda | Python 3.9 | Numpy 1.25.2 |
| Scikit_Learn 1.3.0 | ||
| Pandas 1.2.4 | ||
| PyTorch 1.13.1 | ||
| Matplotlib 3.5.1 |
Tab. 1 Experimental platform and environmental parameters
| 解释器 | 编译语言环境 | 所依赖包 |
|---|---|---|
| Anaconda | Python 3.9 | Numpy 1.25.2 |
| Scikit_Learn 1.3.0 | ||
| Pandas 1.2.4 | ||
| PyTorch 1.13.1 | ||
| Matplotlib 3.5.1 |
| 模型 | 预测特征 | MSE | RMSE | MAE | DTW | 10% CIs |
|---|---|---|---|---|---|---|
| LSTM-f | 0.002 306 | 0.048 023 | 0.037 285 | 0.986 192 | 0.425 | |
| 0.000 283 | 0.016 848 | 0.012 818 | 0.525 692 | 0.999 | ||
| 0.005 946 | 0.077 114 | 0.059 742 | 2.819 708 | 1.000 | ||
| PhyLSTM | — | — | — | — | 0.607 | |
| — | — | — | — | 0.988 | ||
| — | — | — | — | 0.999 | ||
| Transformer | 0.095 935 | 0.309 733 | 0.270 533 | 24.763 597 | 0.051 | |
| 0.320 162 | 0.565 829 | 0.466 105 | 29.307 956 | 0.125 | ||
| 22.317 547 | 4.724 145 | 3.750 341 | 272.492 606 | 0.126 | ||
| Py-GA | 0.002 981 | 0.054 599 | 0.047 147 | 1.226 385 | 0.233 | |
| 0.000 117 | 0.010 846 | 0.005 040 | 0.372 345 | 0.999 | ||
| 0.009 259 | 0.096 227 | 0.055 631 | 3.478 364 | 0.999 | ||
| GPFA | 0.000 153 | 0.012 407 | 0.008 733 | 0.233 272 | 0.970 | |
| 0.000 037 | 0.006 151 | 0.003 333 | 0.209 243 | 1.000 | ||
| 0.000 988 | 0.031 432 | 0.019 545 | 1.156 271 | 1.000 |
Tab. 2 Multivariate response prediction results on BoucWen dataset
| 模型 | 预测特征 | MSE | RMSE | MAE | DTW | 10% CIs |
|---|---|---|---|---|---|---|
| LSTM-f | 0.002 306 | 0.048 023 | 0.037 285 | 0.986 192 | 0.425 | |
| 0.000 283 | 0.016 848 | 0.012 818 | 0.525 692 | 0.999 | ||
| 0.005 946 | 0.077 114 | 0.059 742 | 2.819 708 | 1.000 | ||
| PhyLSTM | — | — | — | — | 0.607 | |
| — | — | — | — | 0.988 | ||
| — | — | — | — | 0.999 | ||
| Transformer | 0.095 935 | 0.309 733 | 0.270 533 | 24.763 597 | 0.051 | |
| 0.320 162 | 0.565 829 | 0.466 105 | 29.307 956 | 0.125 | ||
| 22.317 547 | 4.724 145 | 3.750 341 | 272.492 606 | 0.126 | ||
| Py-GA | 0.002 981 | 0.054 599 | 0.047 147 | 1.226 385 | 0.233 | |
| 0.000 117 | 0.010 846 | 0.005 040 | 0.372 345 | 0.999 | ||
| 0.009 259 | 0.096 227 | 0.055 631 | 3.478 364 | 0.999 | ||
| GPFA | 0.000 153 | 0.012 407 | 0.008 733 | 0.233 272 | 0.970 | |
| 0.000 037 | 0.006 151 | 0.003 333 | 0.209 243 | 1.000 | ||
| 0.000 988 | 0.031 432 | 0.019 545 | 1.156 271 | 1.000 |
| 模型 | 预测特征 | MSE | RMSE | MAE | DTW | 10% CIs | 5% CIs |
|---|---|---|---|---|---|---|---|
| LSTM-f | 0.000 110 | 0.108 291 | 0.026 729 | 0.837 010 | 0.999 999 | 0.940 704 | |
| 0.001 240 | 0.035 221 | 0.017 203 | 3.281 345 | 0.999 999 | 0.991 925 | ||
| 0.033 830 | 0.183 930 | 0.057 140 | 19.641 019 | 1.000 000 | 0.999 999 | ||
| PhyCNN | 0.000 912 | 0.030 204 | 0.012 316 | 1.821 417 | 0.810 818 | 0.488 498 | |
| 0.021 800 | 0.147 648 | 0.055 000 | 8.927 695 | 0.793 698 | 0.472 547 | ||
| 0.585 582 | 0.765 233 | 0.256 364 | 49.716 902 | 0.992 846 | 0.821 310 | ||
| Transformer | 0.004 638 | 0.068 108 | 0.045 610 | 3.335 346 | 0.999 983 | 0.438 399 | |
| 0.114 904 | 0.338 975 | 0.216 363 | 17.114 095 | 0.999 983 | 0.416 731 | ||
| 3.552 450 | 1.884 794 | 0.995 407 | 138.113 710 | 1.000 000 | 0.725 158 | ||
| Py-GA | 0.000 141 | 0.011 881 | 0.050 842 | 0.204 369 | 0.999 155 | 0.904 874 | |
| 0.002 789 | 0.052 817 | 0.022 814 | 0.413 807 | 0.999 588 | 0.922 677 | ||
| 0.099 160 | 0.314 897 | 0.123 730 | 32.137 402 | 0.999 999 | 0.998 916 | ||
| GPFA | 0.000 045 | 0.006 753 | 0.003 349 | 0.615 755 | 0.999 999 | 0.996 677 | |
| 0.000 882 | 0.029 700 | 0.012 723 | 2.843 801 | 0.999 999 | 0.998 318 | ||
| 0.025 152 | 0.158 596 | 0.060 377 | 17.987 589 | 1.000 000 | 0.999 999 |
Tab. 3 Multivariate response prediction results on PEER dataset
| 模型 | 预测特征 | MSE | RMSE | MAE | DTW | 10% CIs | 5% CIs |
|---|---|---|---|---|---|---|---|
| LSTM-f | 0.000 110 | 0.108 291 | 0.026 729 | 0.837 010 | 0.999 999 | 0.940 704 | |
| 0.001 240 | 0.035 221 | 0.017 203 | 3.281 345 | 0.999 999 | 0.991 925 | ||
| 0.033 830 | 0.183 930 | 0.057 140 | 19.641 019 | 1.000 000 | 0.999 999 | ||
| PhyCNN | 0.000 912 | 0.030 204 | 0.012 316 | 1.821 417 | 0.810 818 | 0.488 498 | |
| 0.021 800 | 0.147 648 | 0.055 000 | 8.927 695 | 0.793 698 | 0.472 547 | ||
| 0.585 582 | 0.765 233 | 0.256 364 | 49.716 902 | 0.992 846 | 0.821 310 | ||
| Transformer | 0.004 638 | 0.068 108 | 0.045 610 | 3.335 346 | 0.999 983 | 0.438 399 | |
| 0.114 904 | 0.338 975 | 0.216 363 | 17.114 095 | 0.999 983 | 0.416 731 | ||
| 3.552 450 | 1.884 794 | 0.995 407 | 138.113 710 | 1.000 000 | 0.725 158 | ||
| Py-GA | 0.000 141 | 0.011 881 | 0.050 842 | 0.204 369 | 0.999 155 | 0.904 874 | |
| 0.002 789 | 0.052 817 | 0.022 814 | 0.413 807 | 0.999 588 | 0.922 677 | ||
| 0.099 160 | 0.314 897 | 0.123 730 | 32.137 402 | 0.999 999 | 0.998 916 | ||
| GPFA | 0.000 045 | 0.006 753 | 0.003 349 | 0.615 755 | 0.999 999 | 0.996 677 | |
| 0.000 882 | 0.029 700 | 0.012 723 | 2.843 801 | 0.999 999 | 0.998 318 | ||
| 0.025 152 | 0.158 596 | 0.060 377 | 17.987 589 | 1.000 000 | 0.999 999 |
| 模型 | 预测特征 | MSE | RMSE | MAE | DTW | 10% CIs | 5% CIs |
|---|---|---|---|---|---|---|---|
| LSTM-f | 0.000 174 | 0.012 432 | 0.009 001 | 0.721 831 | 0.764 638 | 0.447 009 | |
| 0.000 167 | 0.012 113 | 0.008 767 | 0.682 037 | 0.777 570 | 0.458 102 | ||
| 0.000 250 | 0.014 898 | 0.010 587 | 0.892 730 | 0.681 705 | 0.382 101 | ||
| ResLSTM | 0.000 177 | 0.012 684 | 0.009 284 | 0.710 881 | 0.761 263 | 0.443 953 | |
| 0.000 174 | 0.012 541 | 0.009 214 | 0.705 233 | 0.768 198 | 0.449 521 | ||
| 0.000 237 | 0.014 781 | 0.010 740 | 0.866 818 | 0.695 377 | 0.392 063 | ||
| Transformer | 0.001 242 | 0.032 611 | 0.022 594 | 1.946 335 | 0.343 760 | 0.176 113 | |
| 0.001 272 | 0.033 306 | 0.023 275 | 2.029 500 | 0.342 040 | 0.175 185 | ||
| 0.001 376 | 0.034 026 | 0.024 034 | 2.038 816 | 0.330 008 | 0.168 719 | ||
| Py-GA | 0.003 407 | 0.058 377 | 0.041 962 | 2.133 604 | 0.315 236 | 0.160 850 | |
| 0.003 273 | 0.057 213 | 0.042 087 | 1.858 742 | 0.319 442 | 0.163 084 | ||
| 0.003 406 | 0.058 361 | 0.043 052 | 1.802 478 | 0.307 476 | 0.156 722 | ||
| GPFA | 0.000 180 | 0.012 709 | 0.008 669 | 0.667 656 | 0.757 168 | 0.440 756 | |
| 0.000 196 | 0.013 078 | 0.008 845 | 0.715 483 | 0.740 745 | 0.427 293 | ||
| 0.000 235 | 0.014 714 | 0.010 201 | 0.806 643 | 0.697 854 | 0.394 090 |
Tab. 4 Multivariate response prediction results on MRFDBF database
| 模型 | 预测特征 | MSE | RMSE | MAE | DTW | 10% CIs | 5% CIs |
|---|---|---|---|---|---|---|---|
| LSTM-f | 0.000 174 | 0.012 432 | 0.009 001 | 0.721 831 | 0.764 638 | 0.447 009 | |
| 0.000 167 | 0.012 113 | 0.008 767 | 0.682 037 | 0.777 570 | 0.458 102 | ||
| 0.000 250 | 0.014 898 | 0.010 587 | 0.892 730 | 0.681 705 | 0.382 101 | ||
| ResLSTM | 0.000 177 | 0.012 684 | 0.009 284 | 0.710 881 | 0.761 263 | 0.443 953 | |
| 0.000 174 | 0.012 541 | 0.009 214 | 0.705 233 | 0.768 198 | 0.449 521 | ||
| 0.000 237 | 0.014 781 | 0.010 740 | 0.866 818 | 0.695 377 | 0.392 063 | ||
| Transformer | 0.001 242 | 0.032 611 | 0.022 594 | 1.946 335 | 0.343 760 | 0.176 113 | |
| 0.001 272 | 0.033 306 | 0.023 275 | 2.029 500 | 0.342 040 | 0.175 185 | ||
| 0.001 376 | 0.034 026 | 0.024 034 | 2.038 816 | 0.330 008 | 0.168 719 | ||
| Py-GA | 0.003 407 | 0.058 377 | 0.041 962 | 2.133 604 | 0.315 236 | 0.160 850 | |
| 0.003 273 | 0.057 213 | 0.042 087 | 1.858 742 | 0.319 442 | 0.163 084 | ||
| 0.003 406 | 0.058 361 | 0.043 052 | 1.802 478 | 0.307 476 | 0.156 722 | ||
| GPFA | 0.000 180 | 0.012 709 | 0.008 669 | 0.667 656 | 0.757 168 | 0.440 756 | |
| 0.000 196 | 0.013 078 | 0.008 845 | 0.715 483 | 0.740 745 | 0.427 293 | ||
| 0.000 235 | 0.014 714 | 0.010 201 | 0.806 643 | 0.697 854 | 0.394 090 |
| 模型 | 评价指标 | BoucWen数据集 | PEER数据集 | ||||
|---|---|---|---|---|---|---|---|
| GPFA | MSE | 0.000 153 | 0.000 037 | 0.000 988 | 0.000 045 | 0.000 882 | 0.025 152 |
| MAE | 0.008 733 | 0.003 333 | 0.019 545 | 0.003 349 | 0.012 723 | 0.060 377 | |
| GPFA-NF | MSE | 0.010 524 | 0.000 038 | 0.011 227 | 0.000 070 | 0.000 867 | 0.040 341 |
| MAE | 0.071 349 | 0.003 660 | 0.066 846 | 0.004 939 | 0.013 285 | 0.070 412 | |
Tab. 5 Ablation experimental results
| 模型 | 评价指标 | BoucWen数据集 | PEER数据集 | ||||
|---|---|---|---|---|---|---|---|
| GPFA | MSE | 0.000 153 | 0.000 037 | 0.000 988 | 0.000 045 | 0.000 882 | 0.025 152 |
| MAE | 0.008 733 | 0.003 333 | 0.019 545 | 0.003 349 | 0.012 723 | 0.060 377 | |
| GPFA-NF | MSE | 0.010 524 | 0.000 038 | 0.011 227 | 0.000 070 | 0.000 867 | 0.040 341 |
| MAE | 0.071 349 | 0.003 660 | 0.066 846 | 0.004 939 | 0.013 285 | 0.070 412 | |
| [1] | CHEN W, RAO G, KANG D, et al. Early report of the source characteristics, ground motions, and casualty estimates of the 2023 Mw 7.8 and 7.5 Turkey earthquakes[J]. Journal of Earth Science, 2023, 34(2): 297-303. |
| [2] | CHEN H, XIE Q, LI Z, et al. Seismic damage to structures in the 2015 Nepal earthquake sequences[J]. Journal of Earthquake Engineering, 2017, 21(4): 551-578. |
| [3] | KHAJWAL A B, CHENG C S, NOSHADRAVAN A. Post‐disaster damage classification based on deep multi‐view image fusion[J]. Computer‐Aided Civil and Infrastructure Engineering, 2023, 38(4): 528-544. |
| [4] | NIKOLIĆ Ž, ŽIVALJIĆ N, SMOLJANOVIĆ H, et al. Numerical modelling of reinforced-concrete structures under seismic loading based on the finite element method with discrete inter-element cracks[J]. Earthquake Engineering and Structural Dynamics, 2017, 46(1): 159-178. |
| [5] | HARIRI-ARDEBILI M A, SEYED-KOLBADI S M, SAOUMA V E, et al. Random finite element method for the seismic analysis of gravity dams[J]. Engineering Structures, 2018, 171: 405-420. |
| [6] | MAHADEVAN S, RAGHOTHAMACHAR P. Adaptive simulation for system reliability analysis of large structures[J]. Computers and Structures, 2000, 77(6): 725-734. |
| [7] | XU J, ZHANG W, SUN R. Efficient reliability assessment of structural dynamic systems with unequal weighted quasi-Monte Carlo simulation[J]. Computers and Structures, 2016, 175: 37-51. |
| [8] | GATTULLI V, LOFRANO E, PAOLONE A, et al. Performances of FRP reinforcements on masonry buildings evaluated by fragility curves[J]. Computers and Structures, 2017, 190: 150-161. |
| [9] | MITSEAS I P, BEER M. First-excursion stochastic incremental dynamics methodology for hysteretic structural systems subject to seismic excitation[J]. Computers and Structures, 2021, 242: No. 106359. |
| [10] | PANG Y, CAI L, OUYANG H, et al. Seismic performance assessment of different fibers reinforced concrete columns using incremental dynamic analysis[J]. Construction and Building Materials, 2019, 203: 241-257. |
| [11] | BRUNESI E, NASCIMBENE R, PARISI F, et al. Progressive collapse fragility of reinforced concrete framed structures through incremental dynamic analysis[J]. Engineering Structures, 2015, 104: 65-79. |
| [12] | VURTUR BADARINATH P, CHIERICHETTI M, DAVOUDI KAKHKI F. A machine learning approach as a surrogate for a finite element analysis: status of research and application to one dimensional systems[J]. Sensors, 2021, 21(5): No.1654. |
| [13] | 吴波,李英民.基于神经网络的结构地震反应仿真[J]. 世界地震工程,2003,19(3):144-149. |
| WU B, LI Y M. Simulation of structural seismic responses based on neural networks[J]. World Earthquake Engineering, 2003, 19(3): 144-149. | |
| [14] | LAGAROS N D, PAPADRAKAKIS M. Neural network based prediction schemes of the non-linear seismic response of 3D buildings[J]. Advances in Engineering Software, 2012, 44(1): 92-115. |
| [15] | HORE S, CHATTERJEE S, SARKAR S, et al. Neural-based prediction of structural failure of multistoried RC buildings[J]. Structural Engineering and Mechanics, 2016, 58(3): 459-473. |
| [16] | 许泽坤,陈隽.非线性结构地震响应的神经网络算法[J].工程力学,2021,38(9):133-145. |
| XU Z K, CHEN J. Neural network algorithm for nonlinear structural seismic response[J]. Engineering Mechanics, 2021, 38(9): 133-145. | |
| [17] | 廖聿宸,张瑞阳,林榕,等.基于层叠式残差LSTM网络的桥梁非线性地震响应预测[J].工程力学,2024,41(4):47-58. |
| LIAO Y C, ZHANG R Y, LIN R, et al. A stacked residual LSTM network for nonlinear seismic response prediction of bridges[J]. Engineering Mechanics, 2024, 41(4): 47-58. | |
| [18] | 张学兵,谢啸楠,王礼,等.基于CNN-LSTM混合神经网络的高速铁路地震响应预测[J].湘潭大学学报(自然科学版),2024,46(1):1-13. |
| ZHANG X B, XIE X N, WANG L, et al. High-speed railway seismic response prediction using CNN-LSTM hybrid neural network[J]. Journal of Xiangtan University (Natural Science Edition), 2024, 46(1): 1-13. | |
| [19] | ZHOU H, ZHANG S, PENG J, et al. Informer: beyond efficient Transformer for long sequence time-series forecasting[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 11106-11115. |
| [20] | ZENG P, HU G, ZHOU X, et al. Muformer: a long sequence time-series forecasting model based on modified multi-head attention[J]. Knowledge-Based Systems, 2022, 254: No.109584. |
| [21] | ZENG P, HU G, ZHOU X, et al. Seformer: a long sequence time-series forecasting model based on binary position encoding and information transfer regularization[J]. Applied Intelligence, 2023, 53(12): 15747-15771. |
| [22] | LIAO Y, LIN R, ZHANG R, et al. Attention-based LSTM (AttLSTM) neural network for seismic response modeling of bridges[J]. Computers and Structures, 2023, 275: No.106915. |
| [23] | 汪鑫.基于优化神经网络的多层钢筋混凝土结构地震响应预测[D].哈尔滨:哈尔滨工业大学,2020. |
| WANG X. Prediction of seismic response of multi-story reinforced concrete structures based on optimized neural network[D]. Harbin: Harbin Institute of Technology, 2020. | |
| [24] | XU Y, LU X, FEI Y, et al. Hysteretic behavior simulation based on pyramid neural network: principle, network architecture, case study and explanation[J]. Advances in Structural Engineering, 2023, 26(13): 2359-2374. |
| [25] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
| [26] | ZHOU T, MA Z, WEN Q, et al. FEDformer: frequency enhanced decomposed Transformer for long-term series forecasting[C]// Proceedings of the 39th International Conference on Machine Learning. New York: JMLR.org, 2022: 27268-27286. |
| [27] | PATRO B N, NAMBOODIRI V P, AGNEESWARAN V S. SpectFormer: frequency and attention is what you need in a Vision Transformer[C]// Proceedings of the 2025 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2025: 9543-9554 . |
| [28] | 徐熙,蒲武川.考虑地震动持时影响的非结构构件加速度响应预测[J].地震工程与工程振动,2019,39(3):230-237. |
| XU X, PU W C. Estimation of the acceleration of non-structural component considering the effect of duration of earthquake ground motion[J]. Earthquake Engineering and Engineering Dynamics, 2019, 39(3): 230-237. | |
| [29] | WEN Y K. Equivalent linearization for hysteretic systems under random excitation[J]. Journal of Applied Mechanics, 1980, 47(1): 150-154. |
| [30] | ZHANG R, LIU Y, SUN H. Physics-informed multi-LSTM networks for metamodeling of nonlinear structures[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 369: No.113226. |
| [31] | ZHANG R, CHEN Z, CHEN S, et al. Deep long short-term memory networks for nonlinear structural seismic response prediction[J]. Computers and Structures, 2019, 220: 55-68. |
| [32] | CHIOU B, DARRAGH R, GREGOR N, et al. NGA project strong-motion database[J]. Earthquake Spectra, 2008, 24(1): 23-44. |
| [33] | ZHANG R, LIU Y, SUN H. Physics-guided Convolutional Neural Network (PhyCNN) for data-driven seismic response modeling[J]. Engineering Structures, 2020, 215: No.110704. |
| [34] | DONG B, SAUSE R, RICLES J M. Seismic response and damage of reduced-strength steel MRF structures with nonlinear viscous dampers[J]. Journal of Structural Engineering, 2018, 144(12): No.04018221. |
| [1] | Weigang LI, Jiale SHAO, Zhiqiang TIAN. Point cloud classification and segmentation network based on dual attention mechanism and multi-scale fusion [J]. Journal of Computer Applications, 2025, 45(9): 3003-3010. |
| [2] | Xiang WANG, Zhixiang CHEN, Guojun MAO. Multivariate time series prediction method combining local and global correlation [J]. Journal of Computer Applications, 2025, 45(9): 2806-2816. |
| [3] | Zhixiong XU, Bo LI, Xiaoyong BIAN, Qiren HU. Adversarial sample embedded attention U-Net for 3D medical image segmentation [J]. Journal of Computer Applications, 2025, 45(9): 3011-3016. |
| [4] | Hongjun ZHANG, Gaojun PAN, Hao YE, Yubin LU, Yiheng MIAO. Multi-source heterogeneous data analysis method combining deep learning and tensor decomposition [J]. Journal of Computer Applications, 2025, 45(9): 2838-2847. |
| [5] | Jin LI, Liqun LIU. SAR and visible image fusion based on residual Swin Transformer [J]. Journal of Computer Applications, 2025, 45(9): 2949-2956. |
| [6] | Bing YIN, Zhenhua LING, Yin LIN, Changfeng XI, Ying LIU. Emotion recognition method compatible with missing modal reasoning [J]. Journal of Computer Applications, 2025, 45(9): 2764-2772. |
| [7] | Panfeng JING, Yudong LIANG, Chaowei LI, Junru GUO, Jinyu GUO. Semi-supervised image dehazing algorithm based on teacher-student learning [J]. Journal of Computer Applications, 2025, 45(9): 2975-2983. |
| [8] | Yanhua LIAO, Yuanxia YAN, Wenlin PAN. Multi-target detection algorithm for traffic intersection images based on YOLOv9 [J]. Journal of Computer Applications, 2025, 45(8): 2555-2565. |
| [9] | Lina GE, Mingyu WANG, Lei TIAN. Review of research on efficiency of federated learning [J]. Journal of Computer Applications, 2025, 45(8): 2387-2398. |
| [10] | Peng PENG, Ziting CAI, Wenling LIU, Caihua CHEN, Wei ZENG, Baolai HUANG. Speech emotion recognition method based on hybrid Siamese network with CNN and bidirectional GRU [J]. Journal of Computer Applications, 2025, 45(8): 2515-2521. |
| [11] | Shuo ZHANG, Guokai SUN, Yuan ZHUANG, Xiaoyu FENG, Jingzhi WANG. Dynamic detection method of eclipse attacks for blockchain node analysis [J]. Journal of Computer Applications, 2025, 45(8): 2428-2436. |
| [12] | Jinxian SUO, Liping ZHANG, Sheng YAN, Dongqi WANG, Yawen ZHANG. Review of interpretable deep knowledge tracing methods [J]. Journal of Computer Applications, 2025, 45(7): 2043-2055. |
| [13] | Zhenzhou WANG, Fangfang GUO, Jingfang SU, He SU, Jianchao WANG. Robustness optimization method of visual model for intelligent inspection [J]. Journal of Computer Applications, 2025, 45(7): 2361-2368. |
| [14] | Qiaoling QI, Xiaoxiao WANG, Qianqian ZHANG, Peng WANG, Yongfeng DONG. Label noise adaptive learning algorithm based on meta-learning [J]. Journal of Computer Applications, 2025, 45(7): 2113-2122. |
| [15] | Xiaoyang ZHAO, Xinzheng XU, Zhongnian LI. Research review on explainable artificial intelligence in internet of things applications [J]. Journal of Computer Applications, 2025, 45(7): 2169-2179. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||