| [1] |
NAKAMOTO S. Bitcoin: a peer-to-peer electronic cash system[EB/OL] [2024-07-04]..
|
| [2] |
REBELLO G A F, CAMILO G F, DE SOUZA L A C, et al. A survey on blockchain scalability: from hardware to layer-two protocols[J]. IEEE Communications Surveys and Tutorials, 2024, 26(4): 2411-2458.
|
| [3] |
WANG J, WANG H. Monoxide: scale out blockchains with asynchronous consensus zones[C]// Proceedings of the 16th USENIX Symposium on Networked Systems Design and Implementation. Berkeley: USENIX Association, 2019: 95-112.
|
| [4] |
HUANG H, PENG X, ZHAN J, et al. BrokerChain: a cross-shard blockchain protocol for account/balance-based state sharding[C]// Proceedings of the 2022 IEEE Conference on Computer Communications. Piscataway: IEEE, 2022: 1968-1977.
|
| [5] |
XU J, MING Y, WU Z, et al. X-Shard: optimistic cross-shard transaction processing for sharding-based blockchains[J]. IEEE Transactions on Parallel and Distributed Systems, 2024, 35(4): 548-559.
|
| [6] |
HONG Z, GUO S, ZHOU E, et al. GriDB: scaling blockchain database via sharding and off-chain cross-shard mechanism[J]. Proceedings of the VLDB Endowment, 2023, 16(7): 1685-1698.
|
| [7] |
HONG Z, GUO S, LI P, et al. Pyramid: a layered sharding blockchain system[C]// Proceedings of the 2021 IEEE Conference on Computer Communications. Piscataway: IEEE, 2021: 1-10.
|
| [8] |
QIU X, LIU L, CHEN W, et al. Online deep reinforcement learning for computation offloading in blockchain-empowered mobile edge computing[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 8050-8062.
|
| [9] |
ZAMANI M, MOVAHEDI M, RAYKOVA M. RapidChain: scaling blockchain via full sharding[C]// Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 931-948.
|
| [10] |
MA S, WANG S, W-T TSAI. Delay analysis of consensus communication for blockchain-based applications using network calculus[J]. IEEE Wireless Communications Letters, 2022, 11(9): 1825-1829.
|
| [11] |
LI Z, XIAO B, GUO S, et al. Securing deployed smart contracts and DeFi with distributed TEE cluster[J]. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(3): 828-842.
|
| [12] |
CASTRO M, LISKOV B. Practical byzantine fault tolerance[C]// Proceedings of the 3rd USENIX Symposium on Operating Systems Design and Implementation. Berkeley: USENIX Association, 1999: 173-186.
|
| [13] |
QI X, LI Y. LightCross: sharding with lightweight cross-shard execution for smart contracts[C]// Proceedings of the 2024 IEEE Conference on Computer Communications. Piscataway: IEEE, 2024: 1681-1690.
|
| [14] |
HONG Z, GUO S, LI P. Scaling blockchain via layered sharding[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(12): 3575-3588.
|
| [15] |
LIU Y, XING X, CHEN H, et al. A flexible sharding blockchain protocol based on cross-shard byzantine fault tolerance[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2276-2291.
|
| [16] |
ZHANG J, CHEN W, HONG Z, et al. Efficient execution of arbitrarily complex cross-shard contracts for blockchain sharding[J]. IEEE Transactions on Computers, 2024, 73(5): 1190-1205.
|
| [17] |
CAI Z, LI Y, LIU M, et al. Benzene: scaling blockchain with cooperation-based sharding[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 34(2): 639-654.
|
| [18] |
DAS P, ECKEY L, FRASSETTO T, et al. FastKitten: practical smart contracts on Bitcoin[C]// Proceedings of the 28th USENIX Security Symposium. Berkeley: USENIX Association, 2019: 801-818.
|
| [19] |
CHENG R, ZHANG F, KOS J, et al. Ekiden: a platform for confidentiality-preserving, trustworthy, and performant smart contracts[C]// Proceedings of the 2019 IEEE European Symposium on Security and Privacy. Piscataway: IEEE, 2019: 185-200.
|
| [20] |
WÜST K, MATETIC S, EGLI S, et al. ACE: asynchronous and concurrent execution of complex smart contracts[C]// Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2020: 587-600.
|
| [21] |
DOLEV D. Unanimity in an unknown and unreliable environment[C]// Proceedings of the 22nd Annual Symposium on Foundations of Computer Science. Piscataway: IEEE, 1981: 159-168.
|
| [22] |
SHA M, LI J, WANG S, et al. TEE-based general-purpose computational backend for secure delegated data processing[J]. Proceedings of the ACM on Management of Data, 2023, 1(4): No.263.
|
| [23] |
KARYPIS G, KUMAR V. A fast and high quality multilevel scheme for partitioning irregular graphs[J]. SIAM Journal on Scientific Computing, 1998, 20(1): 359-392.
|
| [24] |
KIM B, TEWARI A. On the optimality of perturbations in stochastic and adversarial multi-armed bandit problems[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 2695-2704.
|
| [25] |
蒋伟进,陈萍萍,张婉清,等.基于组合多臂赌博机的移动群智感知用户招募算法[J].电子与信息学报,2022,44(3):1119-1128.
|
|
JIANG W J, CHEN P P, ZHANG W Q, et al. Mobile crowdsensing user recruitment algorithm based on combination multi-armed bandit[J]. Journal of Electronics and Information Technology, 2022, 44(3): 1119-1128.
|