[1]曾攀.工程中的有限元方法[M].3版.北京:清华大学出版社,2006.[2]Nvidia. NVIDIA CUDA C programming guide[EB/OL]. [2012-05-15]. http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf.[3]KRUGER T, WESTERMANN R. Linear algebra operators for GPU implementation of numerical algorithms[J]. ACM Transactions on Graphics, 2003, 22(3):908-916.[4]BOLZ J, FARMER I, GRISPUN E, et al. Sparse matrix solvers on the GPU:conjugate gradients and multigrid[J].ACM Transactions on Graphics,2003,22(3):917-924.[5]NATHAN B,MICHAEL G. Efficient sparse matrix-vector multiplication on CUDA [R]. Santa Clara, California: NVIDIA, 2008.[6]AIL C, AKIRA N, SATOSHI M. Fast conjugate gradients with multiple GPUs[C]// Computational Scinence-ICCS 2009, LNCS 5544. Berlin: Springer,2009:893-903.[7]MUTHU M B, RAJESH B. Optimizing sparse matrix-vector multiplication on GPUs[R]. Armonk, NY: IBM,2009.[8]李熙铭. 基于GPU的高性能有限元方法研究[D].长春:吉林大学,2011.[9]胡耀国.基于GPU的有限元方法研究[D].武汉:华中科技大学,2011.[10]李晓梅,吴建平. Krylov子空间方法及其并行计算[J].计算机科学,2005, 32(1): 19-20.[11]李爱芹. 线性方程组的迭代解法[J]. 科学技术与工程,2007, 7(14): 3357-3364.[12]YOUSEF S. Iterative methods for sparse linear systems[M]. 2rd ed. Philadelphia: Society for Industrial and Applied Mathematics,2003.[13]张兰.稀疏矩阵方程组预处理迭代技术研究[D].广州:华南理工大学,2010.[14]Nvidia. CUDA CUSPARSE Library[EB/OL]. [2012-07-01]. http://developer.download.nvidia.com/compute/DevZone/docs/html/CUDALibraries/doc/CUSPARSE_Library.pdf.[15]Nvidia. CUDA CUBLAS Library[EB/OL]. [2012-07-01].http://developer.download.nvidia.com/compute/DevZone/docs/html/CUDALibraries/doc/CUBLAS_Library.pdf.[16]刘小虎,胡耀国,符伟.大规模有限元系统的GPU加速计算研究[J].计算力学学报, 2012, 29(1):146-152.[17]白洪涛.基于GPU的高性能并行算法研究[D].长春:吉林大学,2010.[18]University of Florida. The University of Florida Sparse Matrix Collection [DB/OL]. [2012-08-06].http://www.cise.ufl.edu/research/sparse/matrices.