[1] WANG S. Development and economic impact analysis of Chinese high-speed railway[J]. Journal of Southwest Jiaotong University, 2010, 11(5): 65-69.(王顺洪. 中国高速铁路发展及其经济影响分析[J]. 西南交通大学学报, 2010, 11(5): 65-69.) [2] ZHAO C, LI T, WANG Z, et al. High-speed rail vibration data preprocessing based on MapReduce[J]. Journal of Nanjing University: Natural Science, 2012, 48(4): 390-396.(赵成兵, 李天瑞, 王仲刚,等. 基于MapReduce的高铁振动数据预处理[J]. 南京大学学报:自然科学版, 2012, 48(4): 390-396.) [3] QIN N, JIN W, HUANG J, et al. Feature extraction of high speed train bogie based on ensemble empirical mode decomposition and sample entropy[J]. Journal of Southwest Jiaotong University, 2014, 49(1): 27-32.(秦娜, 金炜东, 黄进, 等. 基于EEMD样本熵的高速列车转向架故障特征提取[J]. 西南交通大学学报, 2014,49(1): 27-32.) [4] ZHAO J, YANG Y, LI T, et al. Fault diagnosis of high-speed rail based on approximate entropy and empirical mode decomposition[J]. Computer Science, 2014, 41(1): 91-94,99.(赵晶晶,杨燕,李天瑞,等. 基于近似熵及EMD的高铁故障诊断[J]. 计算机科学, 2014,41(1): 91-94,99.) [5] QIN N, JIN W, HUANG J, et al. Fault diagnosis of high speed train bogie based on ensemble empirical mode decomposition[J]. Computer Engineering, 2013, 39(12): 1-4.(秦娜, 金炜东, 黄进,等. 基于EEMD的高速列车转向架故障诊断[J]. 计算机工程, 2013, 39(12): 1-4.) [6] QIN N, WANG K, JIN W, et al. Fault feature analysis of high-speed train bogie based on empirical mode decomposition entropy[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1): 57-64,74.(秦娜, 王开云, 金炜东,等. 高速列车转向架故障的经验模态熵特征分析[J]. 交通运输工程学报, 2014, 14(1): 57-64,74.) [7] OWENS J D, HOUSTON M, LUEBKE D, et al. GPU computing[J]. Proceedings of the IEEE, 2008, 96(5): 879-899. [8] NICKOLLS J, BUCK I, GARLAND M, et al. Scalable parallel programming with CUDA[J]. Queue, 2008, 6(2): 40-53. [9] CHENG F, LI D. CUDA-based parallel implementation of the Adaboost algorithm [J]. Computer Engineering and Science, 2011, 33(2):118-123.(程峰, 李德华. 基于CUDA的Adaboost算法并行实现[J]. 计算机工程与科学, 2011, 33(2): 118-123.) [10] OGAWA K, ITO Y, NAKANO K. Efficient Canny edge detection using a GPU[C]//Proceedings of the First IEEE International Conference on Networking and Computing. Piscataway: IEEE Press, 2010: 279-280. [11] IWAI K, NISHIKAWA N, KUROKAWA T. Acceleration of AES encryption on CUDA GPU[J]. International Journal of Networking and Computing, 2012, 2(1): 131-145. [12] XU X, XU G, WANG X, et al. Empirical mode decomposition and its application[J]. Acta Electronica Sinica, 2009, 37(3): 581-585.(徐晓刚, 徐冠雷, 王孝通,等. 经验模式分解(EMD)及其应用[J]. 电子学报, 2009, 37(3): 581-585.) [13] SHEN Z, CHEN X, ZHANG X, et al. A novel intelligent gear fault diagnosis model based on EMD and multi-class TSVM[J]. Measurement, 2012, 45(1): 30-40. [14] XU Y, LI L, HE Z. Approximate entropy and its applications in mechanical fault diagnosis[J]. Information and Control, 2002, 31(6): 547-551.(胥永刚, 李凌均, 何正嘉. 近似熵及其在机械设备故障诊断中的应用[J]. 信息与控制, 2002, 31(6): 547-551.) [15] de LUCA A, TERMINI S. A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory[J]. Information and Control, 1972, 20(4): 301-312. [16] ZHANG M, ZHOU Z. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7): 2038-2048. [17] DONG L, GE W, CHEN K. Study on application of parallel computation on CUDA[J]. Information Technology, 2010(4): 11-15. (董荦, 葛万成, 陈康力. CUDA并行计算的应用研究[J]. 信息技术, 2010(4): 11-15.) |