Journal of Computer Applications ›› 2010, Vol. 30 ›› Issue (2): 486-489.
• Artificial intelligence • Previous Articles Next Articles
Received:
Revised:
Online:
Published:
石为人1,王燕霞2,唐云建3,范敏3
通讯作者:
基金资助:
Abstract: According to the characteristics of small samples and sudden change of some According to the characteristics of small samples and sudden change of some sections in Three Gorges, the ELS-SVM water quality prediction model for Three Gorges was proposed, which consisted of Equal Level Pretreatment Model (ELPM) and Least Squares Support Vector Machines (LS-SVM). ELPM was brought forward to preprocess raw time series data to enhance the smoothness, and Simulated Annealing (SA) algorithm was used for choosing the optimal parameters of LS-SVM. The experimental results indicate that, compared to the typical forecasting models in limited samples prediction, the ELS-SVM forecasting model is superior to the others in water quality parameter prediction of Three Gorges.
Key words: pretreatment, Least Squares Support Vector Machine (LS-SVM), Simulated Annealing (SA), Three Gorges, water quality prediction
摘要: 根据三峡库区某些断面水质监测数据具有样本小、成库前后数据出现跳变的特点,提出一种适用于三峡库区的水质参数预测模型(ELS-SVM)。ELS-SVM通过建立数据预处理模型对原始小样本时序数据进行处理,增强了时序数据的平稳性,并使用模拟退火(SA)算法优选最小二乘支持向量机(LS-SVM)模型参数。与典型的小样本预测模型的比较实验表明,ELS-SVM模型更适用于三峡库区小样本水质时序数据的预测。
关键词: 预处理, 最小二乘支持向量机, 模拟退火, 三峡库区, 水质参数预测
石为人 王燕霞 唐云建 范敏. 小样本跳变水质时序数据预测方法[J]. 计算机应用, 2010, 30(2): 486-489.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/
https://www.joca.cn/EN/Y2010/V30/I2/486