ZHU Liang HAN Ding-ding. Topological evolution on synchronization of dynamic complex networks[J]. Journal of Computer Applications, 2012, 32(02): 330-339.
[1]PECORA L M, CARROLL T L. Master stability functions for synchronized coupled systems [J]. Physical Review Letters, 1998, 80(10):2109-2112.
[2]BARAHONA M, PECORA L M. Synchronization in small-world systems [J]. Physical Review Letters, 2002, 89(5):054101.
[3]DONETTI L, HURTADO P I, MUOZ M A. Entangled networks, synchronization, and optimal network topology [J]. Physical Review Letters, 2005, 95:188701.
[4]GOROCHOWSKI T E, di BERNARDO M, GRIERSON C S. Evolving enhanced topologies for the synchronization of dynamical complex networks [J]. Physical Review E, 2010, 81:056212.
[5]韩定定. 复杂网络的拓扑、动力学行为及其实证研究[D].上海:华东师范大学,2008.
[6]赵明, 周涛, 陈关荣, 等. 复杂网络上动力系统同步的研究进展Ⅱ——如何提高网络的同步能力 [J]. 物理学进展,2008,28(1):22-34.
[7]BARABASI A-L, ALBERT R. Emergence of scaling in random networks [J]. Science, 1999, 286(5439):509-512.
[8]WATTS D J, STROGATZ S H. Collective dynamics of ′small-world′ networks [J]. Nature, 1998, 393(6684):440-442.
[9]LEE E A. Cyber physical systems: Design challenges [C]// ISORC 2008: 11th IEEE International Symposium on Object Oriented Real-time Distributed Computing. Piscataway: IEEE, 2008:363-369.
[10]CHEN GUO, DONG ZHAOYANG, HILL D J, et al. Attack structural vulnerability of power grids: a hybrid approach based on complex networks [J]. Physica A: Statistical Mechanics and its Applications, 2010, 389(3):595-603.