[1] ZHANG S, LI B, WANG B. The application of an improved integration algorithm of support vector machine to the prediction of network security situation [J]. Applied Mechanics and Materials, 2014, 513: 2285-2288. [2] AL-MASRI A N, AB KADIR M Z A, HIZAM H, et al. A novel implementation for generator rotor angle stability prediction using an adaptive artificial neural network application for dynamic security assessment [J]. IEEE Transactions on Power Systems, 2013, 28(3): 2516-2525. [3] GAO K, LIU J, XU R. A hybrid security situation prediction model for information network based on support vector machine and particle swarm optimization [J]. Power System Technology, 2011, 35(4): 176-182. [4] YILMAZ I. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine [J]. Environmental Earth Sciences, 2010, 61(4): 821-836. [5] VAPNIK V N. An overview of statistical learning theory [J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999. [6] SONG G. Computer network security and precaution evaluation based on incremental relevance vector machine algorithm and ACO [J]. International Journal on Advances in Information Sciences and Service Sciences, 2013, 5(1): 120-127. [7] TIPPING M. Sparse Bayesian learning and the relevance vector machine [J]. Journal of Machine Learning Research, 2001, 1: 211-244. [8] WONG P K, XU Q, VONG C M, et al. Rate-dependent hysteresis modeling and control of a piezostage using online support vector machine and relevance vector machine [J]. IEEE Transactions on Industrial Electronics, 2012, 59(4): 1988-2001. [9] YUAN J, WANG K, YU T, et al. Integrating relevance vector machines and genetic algorithms for optimization of seed-separating process [J]. Engineering Applications of Artificial Intelligence, 2007, 20(7): 970-979. [10] PÉRICLES B C, RICARDO B C, ANDRÉ P L F, et al. A hybrid meta-learning architecture for multi-objective optimization of SVM parameters [J]. Neurocomputing, 2014, 143(2): 27-43. [11] KIRKPATRICK S. Optimization by simulated annealing: quantitative studies [J]. Journal of Statistical Physics, 1984, 34(5/6): 975-986. [12] YANG B. Consumption prediction of by-product gas in iron and steel enterprises based on PSA-SVRM model [J]. The Chinese Journal of Process Engineering, 2014, 14(3): 462-468.(杨波.基于PSA-SVRM模型的钢铁企业副产煤气消耗量预测[J].过程工程学报,2014,14(3):462-468.) [13] LIN S W, LEE Z J, CHEN S C, et al. Parameter determination of support vector machine and feature selection using simulated annealing approach [J]. Applied Soft Computing, 2008, 8(4): 1505-1512. [14] Honeynet Project. Know your enemy; statistics. 2001 [EB/OL]. [2014-12-26]. http://old.honeynet.org/papers/stats/. [15] MIT Lincoln Laboratory. 2000 DARPA intrusion detection scenario specific data sets [EB/OL]. [2014-12-26]. http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/2000data.html. [16] CHEN X, ZHENG Q, GUAN X, et al. Quantitative hierarchical threat evaluation model for network security [J]. Journal of Software, 2006, 17(4): 885-897.(陈秀真,郑庆华,管晓宏,等.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897.) [17] FANG G, MA D, WU M, et al. Condition time series prediction of electronic system based on optimized relevance vector machine [J]. Systems Engineering and Electronics, 2013, 35(9): 2011-2015.(范庚,马登武,吴明辉,等.电子系统状态时间序列预测的优化相关向量机方法[J].系统工程与电子技术,2013,35(9):2011-2015.) [18] CHEN H, WANG F, XIAO Z. Method of network security situation prediction based on IHS_RELM [J]. Computer Science, 2013, 40(11): 108-111.(陈虹,王飞,肖振久.基于IHS_RELM的网络安全态势预测方法[J].计算机科学,2013,40(11):108-111.) [19] CHEN H, WANG F, XIAO Z. Network security situation prediction on method based on PSO_SVR [J]. Computer Applications and Software, 2014, 31(8): 292-294.(陈虹,王飞,肖振久.基于PSO_SVR的网络安全态势预测方法[J].计算机应用与软件,2014,31(8):292-294.) |