[1]陈方, 蒋云良, 许允喜. 改进的CenSurE特征和基于相加图像梯度的快速描述符 [J]. 计算机应用, 2011, 31(7): 1818-1821.[2]RUBLEE E, GARAGE W, PARK M,et al.ORB: an efficient alternative to SIFT or SURF [C]// IEEE International Conference on Computer Vision. Barcelona: IEEE, 2011: 2564-2571.[3]BROWN M, GANG H, WINDER S. Discriminative learning of local image descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(1): 43-57.[4]AMBAI M, YOSHIDA Y. CARD: Compact and real-time descrip-tors [C]// IEEE International Conference on Computer Vision. Barcelona: IEEE, 2011: 97-104. [5] CALONDER M, LEPETIT V, STRECHA C, et al. BRIEF: binary robust independent elementary features [J]. ECCV'10: Proceedings of the 11th European Conference on Computer Vision. Berlin: Springer-Verlag, 2010: 778-792.[6] YU GUOSHEN, MOREL J-M. A fully affine invariant image comparison method [C]// ICASSP'09: Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington, DC: IEEE computer Society: IEEE, 2009: 1597-1600.[7] BAY H, TUYTELAARS T, van GOOL L. SURF: speeded up robust features [J]. Computer Vision–ECCV 2006. Berlin: Springer-Verlag, 2006: 404-417.[8] YAN K, SUKTHANKAR R. PCA-SIFT: a more distinctive representation for local image descriptors [C]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE, 2004,2: 506-513.[9] LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.[10] ROSTEN E, DRUMMOND T. Machine learning for high-speed corner detection [C]// Computer Vision–ECCV 2006. Berlin: Springer-Verlag, 2006: 430-443.[11] ROSIN P L. Measuring corner properties [J]. Computer Vision and Image Understanding, 1999, 73(2): 291-307.[12] Learning local image descriptors data [EB/OL] . [2012-11-28]. http://www.cs.ubc.ca/~mbrown/patchdata/patchdata.html.[13] MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.[14] Robotics research group, university of Oxford. Affine covariant features [EB/OL] . [2012-11-28]. http://www.robots.ox.ac.uk/~vgg/research/affine/. |