[1]ZHANG Z, SUN Y, ZHANG S, et al. Clustering analysis of electric load series using clustering algorithm of multi-hierarchy and detailed decomposition based on data mining[J]. Power System Technology,2006,30(2):51-56.(张智晟,孙雅明,张世英,等. 基于数据挖掘多层次细节分解的负荷序列聚类分析[J]. 电网技术,2006,30(2):51-56.)
[2]WANG L,TENG S. Application of clustering and time-based sequence analysis in intrusion detection[J]. Journal of Computer Applications,2010,30(3):699-701,714.(王令剑,滕少华. 聚类和时间序列分析在入侵检测中的应用[J]. 计算机应用,2010,30(3):699-701,714.)
[3]CHEN M, CHEN M, WU W, et al. Dynamic casual relationship in different industry indices: China's evidence[J]. Systems Engineering — Theory and Practice, 2009,29(6):19-31.(陈暮紫,陈敏,吴武清,等. 中国A股市场行业板块间领滞关系的动态变化实证研究[J]. 系统工程理论与实践,2009,29(6):19-31.)
[4]LI Q, ZHANG T, DING H. Herd behavior of the securities investment funds in China-empirical analysis based on periodic law and plate effect[J]. Journal of Central University of Finance and Economics,2013(6):37-43.(李奇泽,张铁刚,丁焕强. 中国证券投资基金羊群行为——基于周期规律与板块效应的实证分析[J]. 中央财经大学学报,2013(6):37-43.)
[5]CAI S, XIA Z, ZHANG W. Semi-supervised spectral clustering of time-series similarity[J]. Computer Engineering and Applications, 2011,47(31):116-118.(蔡世玉,夏战国,张文涛. 时间序列相似性半监督谱聚类[J]. 计算机工程与应用,2011,47(31):116-118.)
[6]KALPAKIS K, GADA D, PUTTAGUNTA V. Distance measures for effective clustering of ARIMA time series[C]// Proceedings of the 2001 IEEE International Conference on Data Mining. Piscataway: IEEE Press, 2001:273-280.
[7]ZHANG H, HO T, LIN M. A non-parametric wavelet feature extractor for time-series classification[C]// KAKDD 2004: Proceedings of the 8th Pacific-Asia Conference, LNCS 3056. Berlin: Springer-Verlag, 2004:595-603.
[8]VAITHYANATHAN S, DOM B. Model-based hierarchical clustering[EB/OL]. [2010-10-10]. http://arxiv.org/ftp/arxiv/papers/1301/1301.3899.pdf.
[9]KANTELHARDT J W, ZSCHIEGNER S A, KOSCIELNY-BUNDE E, et al. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A: Statistical Mechanics and its Applications, 2002,316(1/2/3/4):87-114.
[10]ZHANG L, LIU C. Multifractal analysis of Japan and China stock markets in different economy Periods[J]. Systems Engineering — Theory and Practice,2013,33(2):317-328.(张林,刘春燕. 日中两国不同经济时期股市的多重分形分析[J]. 系统工程理论与实践,2013,33(2):317-328.)
[11]HUANG J, CHENG H, GUO Y, et al. Research on multifractal features of the relation between price and volume in China metal futures market: based on MF-DCCA approach[J]. Management Review,2013,25(4):77-85.(黄健柏,程慧,郭尧琦,等. 金属期货量价关系的多重分形特征研究——基于MF-DCCA方法[J]. 管理评论,2013,25(4):77-85.)
[12]NI Z, HU T, WU X, et al. A novel machine learning approach based on fractal theory: Fractal learning[J]. Journal of University of Science and Technology of China,2013,43(4):265-270.(倪志伟,胡汤磊,吴晓璇,等. 基于分形理论的一种新的机器学习方法:分形学习[J]. 中国科学技术大学学报,2013,43(4):265-270.)
[13]HUANG C, WU Q, WU Z, et al. Clustering financial time series based on multi-fractal features of variance volatility[J]. System Engineering, 2006,24(6):100-103.(黄超,吴清烈,武忠,等. 基于方差波动多重分形特征的金融时间序列聚类[J].系统工程,2006,24(6):100-103.)
[14]ZHONG W, GAO Q, CHENG Y. The clustering of financial time serials based on wavelet and multi-fractal[J]. Systems Engineering,2009,27(3):58-61.(钟维年,高清维,陈燕玲. 基于小波和多重分形的金融时间序列聚类[J]. 系统工程,2009,27(3):58-61.)
[15]YIN Y, SHAN P. Modified DFA and DCCA approach for quantifying the multiscale correlation structure of financial markets[J]. Physica A: Statistical Mechanics and its Applications,2013,392(24): 6442-6457. |