[1] WANG Z. Applications of objective image quality assessment methods [J]. IEEE Signal Processing Magazine, 2011,28(6):137-142. [2] ZHANG L, ZHANG L, BOVIK A C. A feature-enriched completely blind image quality evaluator [J]. IEEE Transactions on Image Processing, 2015, 24(8):2579-2591. [3] MOORTHY A K, BOVIK A C. A two-step framework for constructing blind image quality indices [J]. IEEE Signal Processing Letters, 2010,17(5):513-516. [4] MOORTHY A K, BOVIK A C. Blind image quality assessment: from natural scene statistics to perceptual quality [J]. IEEE Transactions on Image Processing, 2011,20(12):3350-3364. [5] SAAD M A, BOVIK A C, CHARRIER C. A DCT statistics-based blind image quality index [J]. IEEE Signal Processing Letters, 2010,17(6):583-586. [6] SAAD M A, BOVIK A C, CHARRIER C. Blind image quality assessment: a natural scene statistics approach in the DCT domain [J]. IEEE Transactions on Image Processing, 2012,21(8):3339-3352. [7] MITTAL A, MOORTHY A K, BOVIK A C. No-reference image quality assessment in the spatial domain [J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708. [8] HE L, TAO D, LI X, et al. Sparse representation for blind image quality assessment [C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012:1146-1153. [9] LIU L, DONG H, HUANG H, et al. No-reference image quality assessment in curvelet domain [J]. Signal Processing Image Communication, 2014,29(4):494-505. [10] YE P, DOERMANN D. No-reference image quality assessment using visual codebooks [J]. IEEE Transactions on Image Processing, 2012, 21(7):3129-3138. [11] YE P, KUMAR J, KANG L, et al. Unsupervised feature learning framework for no-reference image quality assessment [C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012:1098-1105. [12] LI C, BOVIK A C, WU X. Blind image quality assessment using a general regression neural network [J]. IEEE Transactions on Neural Networks, 2011,22(5):793-799. [13] XUE W, ZHANG L, MOU X. Learning without human scores for blind image quality assessment [C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2013:995-1002. [14] MITTAL A, MURALIDHAR G S, GHOSH J, et al. Blind image quality assessment without human training using latent quality factors [J]. IEEE Signal Processing Letters, 2012,19(2):75-78. [15] MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a "completely blind" image quality analyzer [J]. IEEE Signal Processing Letters, 2013,20(3):209-212. [16] LI C, JU Y, BOVIK A C, et al. No-training, no-reference image quality index using perceptual features [J]. Optical Engineering, 2013,52(5):532-543. [17] LINDEBERG T. Scale-space theory: a basic tool for analysing structures at different scales [J]. Journal of Applied Statistics, 1994,21(2):224-270. [18] RUDERMAN D L. The statistics of natural images [J]. Network Computation in Neural Systems, 1994,5(4):517-548. [19] KIM D O, HAN H S, PARK R H. Gradient information-based image quality metric [J]. IEEE Transactions on Consumer Electronics, 2010,56(2):930-936. [20] LIU A, LIN W, NARWARIA M. Image quality assessment based on gradient similarity [J]. IEEE Transactions on Image Processing, 2012,21(4):1500-1512. [21] XUE W, ZHANG L, MOU X, et al. Gradient magnitude similarity deviation: a highly efficient perceptual image quality index [J]. IEEE Transactions on Image Processing, 2014,23(2):684-695. [22] RUDERMAN D L, BIALEK W. Statistics of natural images: scaling in the woods [J]. Physical Review Letters, 1994,73(6):814-817. [23] SHARIFI K, LEON-GARCIA A. Estimation of shape parameter for generalized Gaussian distributions in subband decompositions of video [J]. IEEE Transactions on Circuits and Systems for Video Technology, 1995,5(1):52-56. [24] GEUSEBROEK J M, SMEULDERS A W M. A six-stimulus theory for stochastic texture [J]. International Journal of Computer Vision, 2005,62(1/2):7-16. [25] PONOMARENKO N, IEREMEIEV O, LUKIN V, et al. A new color image database TID2013: innovations and results [EB/OL]. [2015-01-22]. http://www.comlab.uniroma3.it/BattistiPapers/ACIVS2013_Battisti.pdf. [26] SHEIKH H R, WANG Z, CORMACK L, et al. Live image quality assessment database release2 [DB/OL]. [2005-01-22]. http://live.ece.utexas.edu/research/quality. [27] LARSON E C, CHANDLER D M. Most apparent distortion: full reference image quality assessment and the role for strategy [J]. Journal of Electronic Imaging, 2010,19(1):143-153. [28] JAYARAMAN D, MITTAL A, MOORTHY A K, et al. Live multiply distorted image quality database [DB/OL]. [201207-23]. http://live.ece.utexas.edu/research/quality/live_multidistortedimage.html. |