[1] ZAKI M J. Scalable algorithms for association mining[J]. IEEE Transactions on Knowledge and Data Engineering, 2000,12(3):372-390. [2] 张志宏, 寇纪淞, 陈富赞, 等. 基于遗传算法的顾客购买行为特征提取[J]. 模式识别与人工智能, 2010, 23(2):256-266) (ZHANG Z H, KOU J S, CHEN F Z, et al. Feature extraction of customer purchase behavior based on genetic algorithm[J]. Pattern Recognition and ArtifIcial Intelligence, 2010, 23(2):256-266.) [3] AMO S, DIALLO M S, DIOP C T, et al. Contextual preference mining for user profile construction[J]. Information Systems, 2015,49(C):182-199. [4] HOLLAND S, ESTER M, KIEBLING W. Preference mining:a novel approach on mining user preferences for personalized applications[C]//Proceedings of the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases. Berlin:Springer, 2003:204-216. [5] AMO S D, MARCOS L P, ALVES G, et al. Mining user contextual preferences[J]. Journal of Information and Data Management, 2013,4(1):37-46. [6] CHOMICKI J. Preference formulas in relational queries[J]. ACM Transactions on Database System, 2003, 28(4):427-466. [7] PEREIRA F S F, AMO S D. Evaluation of conditional preference queries[J]. Journal of Information and Data Management, 2010,1(3):521-536. [8] AGRAWAL R, RANTZAU R, TERZI E. Context-sensitive ranking[C]//Proceedings of the ACM SIGMOD International Conference on Management of Data. New York:ACM, 2006:383-394. [9] DAVEY B A, PRIESTLEY H A. Introduction to Lattices and Order[M]. Cambridge:Cambridge University Press, 2002:1277-1286. [10] 刘玫莲, 刘同存, 肖吉军. 基于双向关联规则的网络消费者偏好挖掘研究[J]. 微电子与计算机, 2013,3(3):21-26.(LIU M L, LIU T C, XIAO J J, Web consumer preference mining based on bidirectional association rules[J]. Microelectronics and Computer, 2013, 3(3):21-26.) [11] 孟祥福,马宗民,李昕,等. 基于上下文偏好的数据库查询结果Top-K排序方法[J].计算机学报, 2014,37(9):1986-1998.(MENG X F, MA Z M, LI X, et al. A Top-K query results approach based on contextual preferences for Web database[J]. Chinese Journal of Computers, 2014,37(9):1986-1998.) [12] AMO S D, DIALLO M S, DIOP C T, et al. Mining contextual preference rules for building user profiles[C]//Proceedings of the 14th International Conference Data Warehousing and Knowledge Discovery. Berlin:Springer, 2012, 7448:229-242. [13] ZHU H, CHEN E, YU K, et al. Mining personal context-aware preferences for mobile users[C]//Proceedings of the IEEE 12th International Conference on Data Mining. Washington, DC:IEEE Computer Society, 2012:1212-1217. [14] DEMBCZYNSK K, KOTLOWSK W, SLOWINSKI R. Learning of Rule Ensembles for Multiple Attribute Ranking Problems[M]. Berlin:Springer, 2011:217-247. [15] CHOI S M, KO S K, HAN Y S. A movie recommendation algorithm based on genre correlations[J]. Expert Systems with Applications, 2012, 39(9):8079-8085. [16] LIU B, HSU W, MAY. Integrating classification and association rule mining[EB/OL].[2016-11-20]. http://kckckc.myweb.hinet.net/paper/Integrating_Classification_and_Association_Rule_Mining.pdf. [17] SAVASERE A, OMIECINSKI E, NAVATHE S B. An efficient algorithm for mining association rules in large databases[EB/OL].[2016-11-20]. http://omega.sp.susu.ru/books/acm_sigmod/vol1/is5/VLDB95/P432.PDF. [18] TOIVONEN H. Sampling large databases for association rules[C]//Proceedings of the 22nd International Conference on Very Large Data Bases. San Francisco, CA:Morgan Kaufmann Publishers, 1996:134-145. [19] ZAKI M J, PARTHASARATHY S, LI W, et al. Evaluation of sampling for data mining of association rules[C]//Proceedings of the 7th International Workshop on Research Issues in Data Engineering. Washington, DC:IEEE Computer Society, 1997:42-50. [20] LI W, HAN J, PEI J. CMAR:Accurate and efficient classification based on multiple class-association rules[C]//Proceedings of the 2001 IEEE International Conference on Data Mining. Washington, DC:IEEE Computer Society, 2001:369-376. [21] AGRAWAL R, MANNILA H, SRIKANT R. Fast discovery of association rules[J].Advances in Knowledge Discovery and Data Mining, 1996, 32(3):307-328. |