[1] 张素琪,梁志刚,胡利娟,等.改进的多维关联规则算法研究及应用[J].计算机工程与科学,2012,34(9):174-179.(ZHANG S Q, LIANG Z G, HU L J, et al. Research and application of improved multi-dimensional association rule algorithm[J]. Computer Engineering and Science, 2012, 34(9):174-179.) [2] HAN J, PEI J, YIN Y. Mining frequent patterns without candidate generation[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2000:1-12. [3] ESSALMI H, FAR M E, MOHAJIR M E, et al. A novel approach for mining frequent itemsets:AprioriMin[C]//Proceedings of the 20164th IEEE International Colloquium on Information Science and Technology. Piscataway, NJ:IEEE, 2017:286-289. [4] 崔妍,包志强.关联规则挖掘综述[J]. 计算机应用研究,2016,33(2):331-334.(CUI Y, BAO Z Q. Association rule mining overview[J]. Application Research of Computers, 2016, 33(2):331-334.) [5] 马强,杨金民. 基于MapReduce的频繁项集并行挖掘算法[J]. 计算机应用与软件,2015, 33(9):13-17. (MA Q, YANG J M. Parallel mining algorithm of frequent item set based on MapReduce[J]. Computer Applications and Software, 2015,33(9):13-17.) [6] LI H, WANG Y, ZHANG D, et al. PFP:parallel FP-growth for query recommendation[C]//Proceedings of the 2008 ACM Conference on Recommender Systems. New York:ACM,2008:107-114. [7] 朱文飞,齐建东,洪剑珂. Hadoop下负载均衡的频繁项集挖掘算法研究[J].计算机应用与软件,2016,33(5):36-39.(ZHU W F, QI J D, HONG J K. research on load balanced frequent itemsets mining algorithm based on Hadoop[J]. Computer Applications and Software, 2016, 33(5):36-39.) [8] 章志刚,吉根林.一种基于FP-Growth的频繁项目集并行挖掘算法[J].计算机工程与应用,2014,50(2):103-106. (ZHANG Z G, JI G L. Parallel algorithm for mining frequent item sets based on FP-Growth[J]. Journal of Computer Engineering and Application, 2014,50(2):103-106.) [9] ZAHNG F,LIU M, GUI F, et al. A distributed frequent itemset mining algorithm using Spark for big data analytics[J]. Cluster Computing, 2015,18(4):1493-1501. [10] DENG L L, LOU Y, et al. Improvement and research of FP-Growth algorithm based on distributed spark[C]//Proceedings of the 2015 International Conference on Cloud Computing and Big Data. Piscataway, NJ:IEEE, 2015:105-108. [11] 方向,张功萱.基于Spark的PFP-Growth并行算法优化实现[J].现代电子技术,2016,39(8):9-13. (FANG X, ZHANG G X. PFR-Growth parallel algorithm optimization based on Spark[J]. Modern Electronics Technique, 2016, 39(8):9-13.) [12] LI C, HUANG X. Research on FP-Growth algorithm for massive telecommunication network alarm data based on Spark[C]//Proceedings of the 2016 IEEE International Conference on Software Engineering and Service Science. Piscataway, NJ:IEEE, 2017:875-879. [13] 张稳,罗可.一种基于Spark框架的并行FP-Growth挖掘算法[J].计算机工程与科学, 2017,33(8):1403-1409. (ZHANG W, LUO K. A parallel FP-Growth mining algorithm based on spark framework[J]. Computer Engineering and Science, 2017,33(8):1403-1409.) [14] 陆可,江雨燕, 杜萍萍,等.基于Spark的并行FP-Growth算法优化与实现[J]. 计算机应用与软件,2017,34(9):273-277.(LU K, JIANG Y Y, DU P P, et al. Parallel FP-Growth algorithm optimization and implementation based on Spark[J]. Computer Applications and Software, 2017,34(9):273-277.) [15] ZHOU L, WANG X. Research of the FP-Growth algorithm based on cloud environments[J]. Journal of Software, 2014, 9(3):676-682. [16] 高权,万晓东.基于负载均衡的并行FP-Growth算法[J].计算机工程,2018,39(6):37-72. (GAO Q, WAN X D. Load-balanced parallel FP-Growth algorithm[J]. Computer Engineering, 2018, 39(6):37-72.) [17] Frequent itemset mining dataset repository[EB/OL].[2012-10-21].http://fimi.ua.ac.be/data/. |