| [1] AL-SAADY N M, OBEL O A, CAMM A J. Left atrial appendage:structure, function, and role in thrombo-embolism[J]. Heart, 1999, 82(5):547-554. [2] KONG B, LIU Y, HUANG H, et al. Left atrial appendage closure for thrombo-embolism prevention in patients with atrial fibrillation:advances and perspectives[J]. Journal of Thoracic Disease. 2015, 7(2):199-203.
 [3] LEAL S, MORENO R, de SOUSA ALMEIDA M, et al. Evidence-based percutaneous closure of the left atrial appendage in patients with atrial fibrillation[J]. Current Cardiology Reviews. 2012, 8(1):37-42.
 [4] WHITLOCK R P, HEALEY J S, CONNOLLY S J. Left atrial appendage occlusion does not eliminate the need for warfarin[J]. Circulation, 2009, 120(19):1927-1932.
 [5] ABDELMONEIM S S, MULVAGH S L. Techniques to improve left atrial appendage imaging[J]. Journal of Atrial Fibrillation, 2014, 7(1):No.1059.
 [6] CHAN T F, VESE L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2):266-277.
 [7] LI C, KAO C Y, GORE J C, et al. Implicit active contours driven by local binary fitting energy[C]//Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2007:1-7.
 [8] LI C, KAO C Y, GORE J C, et al. Minimization of region-scalable fitting energy for image segmentation[J]. IEEE Transactions on Image Processing, 2008, 17(10):1940-1949.
 [9] LeCUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
 [10] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2014:580-587.
 [11] GIRSHICK R. Fast R-CNN[EB/OL].[2019-04-20]. https://arxiv.org/pdf/1504.08083.pdf.
 [12] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
 [13] GOULD S, GAO T, KOLLER D. Region-based segmentation and object detection[C]//Advances in Neural Information Processing Systems 22. Cambridge, MA:MIT Press, 2009:655-663.
 [14] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[EB/OL].[2019-04-20]. https://arxiv.org/pdf/1506.02640.pdf.
 [15] REDMON J, FARHADI A. YOLO9000:better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:6517-6525.
 [16] REDMON J, FARHADI A. YOLOv3:an incremental improvement[EB/OL].[2018-05-25]. https://arxiv.org/pdf/1804.02767.pdf.
 [17] MAŠKA M, DANĚK O, GARASA S, et al. Segmentation and shape tracking of whole fluorescent cells based on the Chan-Vese model[J]. IEEE Transactions on Medical Imaging, 2013, 32(6):995-1006.
 [18] WANG X, ZHENG C, LI C. Automated CT liver segmentation using improved Chan-Vese model with global shape constrained energy[C]//Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway:IEEE, 2011:3415-3418.
 [19] MAAS A L, HANNUN A Y, NG A Y, et al. Rectifier nonlinearities improve neural network acoustic models[EB/OL].[2018-05-28].http://robotics.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
 |