Journal of Computer Applications ›› 2020, Vol. 40 ›› Issue (2): 459-464.DOI: 10.11772/j.issn.1001-9081.2019091662
• CCF NDBC 2019 • Previous Articles Next Articles
Shuman WANG, Aiping LI(), Liguo DUAN, Jia FU, Yongle CHEN
Received:
2019-08-12
Revised:
2019-09-29
Accepted:
2019-10-24
Online:
2019-10-31
Published:
2020-02-10
Contact:
Aiping LI
About author:
WANG Shuman, born in 1994, M. S. candidate. Her research interests include service computing, information processing.Supported by:
通讯作者:
李爱萍
作者简介:
王舒漫(1994—),女,山西长治人,硕士研究生,主要研究方向:服务计算、信息处理基金资助:
CLC Number:
Shuman WANG, Aiping LI, Liguo DUAN, Jia FU, Yongle CHEN. Service discovery method for Internet of Things based on Biterm topic model[J]. Journal of Computer Applications, 2020, 40(2): 459-464.
王舒漫, 李爱萍, 段利国, 付佳, 陈永乐. 基于BTM的物联网服务发现方法[J]. 《计算机应用》唯一官方网站, 2020, 40(2): 459-464.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2019091662
设备类型 | 部分参数 |
---|---|
红外 二氧化碳 传感器 | 功能:监测二氧化碳气体浓度并就地显示 工作温度:0~40 ℃ 工作湿度:0~98%RH 供电电压:9~25V DC 输出方式:电流输出型4~20 mA |
JCJ800D 压力传感器 | 功能:实现对液/气体压力的测量与控制 工作温度:-20~75 ℃ 工作湿度:0~100%RH 供电电压:24V DC 量程范围:0~1~30 Mpa 输出方式:电压输出型0~10 V |
分体式RS485 输出温湿度 变送器 | 功能:检测温度和湿度 工作温度:-20~55 ℃ 工作湿度:5~95%RH 测湿范围:0~100%RH 测温范围:-20~50 ℃ 输出方式:电流输出型4~20 mA |
SBWR 温度传感器 | 功能:检测温度 工作温度:25~80 ℃ 工作湿度:5~95%RH 测温范围:0~800 ℃ 输出方式:电流输出型4~20 mA |
Tab. 1 Some parameters information of sensors
设备类型 | 部分参数 |
---|---|
红外 二氧化碳 传感器 | 功能:监测二氧化碳气体浓度并就地显示 工作温度:0~40 ℃ 工作湿度:0~98%RH 供电电压:9~25V DC 输出方式:电流输出型4~20 mA |
JCJ800D 压力传感器 | 功能:实现对液/气体压力的测量与控制 工作温度:-20~75 ℃ 工作湿度:0~100%RH 供电电压:24V DC 量程范围:0~1~30 Mpa 输出方式:电压输出型0~10 V |
分体式RS485 输出温湿度 变送器 | 功能:检测温度和湿度 工作温度:-20~55 ℃ 工作湿度:5~95%RH 测湿范围:0~100%RH 测温范围:-20~50 ℃ 输出方式:电流输出型4~20 mA |
SBWR 温度传感器 | 功能:检测温度 工作温度:25~80 ℃ 工作湿度:5~95%RH 测温范围:0~800 ℃ 输出方式:电流输出型4~20 mA |
文档 | 主题分布概率 | |||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | T6 | |
D1 | 0.000 011 54 | 0.000 000 04 | 0.018 148 69 | 0.000 215 00 | 0.872 685 27 | 0.000 099 07 |
D2 | 0.000 002 00 | 0.000 000 73 | 0.000 001 41 | 0.999 960 86 | 0.000 008 64 | 0.000 001 01 |
D3 | 0.000 000 06 | 0.161 681 17 | 0.774 465 46 | 0.000 001 87 | 0.000 000 19 | 0.024 777 79 |
D4 | 0.000 209 45 | 0.000 177 40 | 0.000 000 59 | 0.000 190 97 | 0.033 195 96 | 0.964 057 00 |
D5 | 0.000 000 60 | 0.719 902 11 | 0.000 455 16 | 0.000 000 34 | 0.279 626 18 | 0.000 000 25 |
Tab. 2 Service document-topic distribution matrix
文档 | 主题分布概率 | |||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | T6 | |
D1 | 0.000 011 54 | 0.000 000 04 | 0.018 148 69 | 0.000 215 00 | 0.872 685 27 | 0.000 099 07 |
D2 | 0.000 002 00 | 0.000 000 73 | 0.000 001 41 | 0.999 960 86 | 0.000 008 64 | 0.000 001 01 |
D3 | 0.000 000 06 | 0.161 681 17 | 0.774 465 46 | 0.000 001 87 | 0.000 000 19 | 0.024 777 79 |
D4 | 0.000 209 45 | 0.000 177 40 | 0.000 000 59 | 0.000 190 97 | 0.033 195 96 | 0.964 057 00 |
D5 | 0.000 000 60 | 0.719 902 11 | 0.000 455 16 | 0.000 000 34 | 0.279 626 18 | 0.000 000 25 |
5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|
10 | 0.73 | 0.70 | 0.67 | 0.71 | 0.76 | 0.83 | 0.87 |
15 | 0.68 | 0.60 | 0.53 | 0.62 | 0.69 | 0.75 | 0.76 |
20 | 0.79 | 0.73 | 0.71 | 0.80 | 0.83 | 0.82 | 0.81 |
30 | 0.86 | 0.82 | 0.79 | 0.81 | 0.84 | 0.87 | 0.87 |
Tab. 3 Distance ratio within and between classes under different number of topics with different K
5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|
10 | 0.73 | 0.70 | 0.67 | 0.71 | 0.76 | 0.83 | 0.87 |
15 | 0.68 | 0.60 | 0.53 | 0.62 | 0.69 | 0.75 | 0.76 |
20 | 0.79 | 0.73 | 0.71 | 0.80 | 0.83 | 0.82 | 0.81 |
30 | 0.86 | 0.82 | 0.79 | 0.81 | 0.84 | 0.87 | 0.87 |
1 | 中国信息通信研究院.物联网白皮书(2018年)[EB/OL]. [2019-04-25].[EB/OL]. [2019-04-25]. ) |
2 | GUINARD D, TRIFA V, KARNOUSKOS S, et al. Interacting with the SOA-based Internet of things: discovery, query, selection, and on-demand provisioning of Web services[J]. IEEE Transactions on Services Computing, 2010, 3(3): 223-235. 10.1109/tsc.2010.3 |
3 | LIU Y, DU F, SUN J, et al. A crowdsourcing-based topic model for service matchmaking in Internet of things[J]. Future Generation Computer Systems, 2018, 87: 186-197. 10.1016/j.future.2018.05.005 |
4 | JIANG B, YE L, WANG J, et al. A semantic-based approach to service clustering from service documents[C]// Proceedings of the 2017 IEEE International Conference on Services Computing. Piscataway: IEEE, 2017: 265-272. 10.1109/scc.2017.41 |
5 | 李平. 面向物联网设备的自动语义标注和服务封装的研究与应用[D]. 广州:华南理工大学, 2017: 6-8. 10.1155/2017/9589064 |
LI P. Research and application of IoT device-oriented automatic semantic annotations and service encapsulation[D]. Guangzhou: South China University of Technology, 2017: 6-8. 10.1155/2017/9589064 | |
6 | 王书龙,侯义斌,高放,等.基于本体的物联网设备资源描述模型[J].北京工业大学学报,2017,43(5):762-769. 10.11936/bjutxb2016070073 |
WANG S L, HOU Y B, GAO F, et al. Ontology-based resource description model for things in IoT[J]. Journal of Beijing University of Technology, 2017, 43(5):762-769. 10.11936/bjutxb2016070073 | |
7 | SANTOS A C, PEDROSA L D, KUIPERS M, et al. Resource description language: a unified description language for network embedded resources[J]. International Journal of Distributed Sensor Networks, 2012, 2012: 860-864. 10.1155/2012/860864 |
8 | TEIXEIRA T, HACHEM S, ISSARNY V. Service oriented middleware for the internet of things: a perspective[C]// Proceedings of the 2011 European Conference on a Service based Internet, LNCS6994. Berlin: Springer, 2011:220-229. |
9 | CASSAR G, BARNAGHI P, WANG W, et al. A hybrid semantic matchmaker for IoT services[C]// Proceedings of the 2012 IEEE International Conference on Green Computing and Communications. Piscataway: IEEE, 2012:210-216. 10.1109/greencom.2012.40 |
10 | 魏强,金芝,许焱. 基于概率主题模型的物联网服务发现[J]. 软件学报, 2014, 25(8):1640-1658. |
WEI Q, JIN Z, XU Y. Service discovery for Internet of things based on probabilistic topic model[J]. Journal of Software, 2014, 25(8):1640-1658. | |
11 | 肖巧翔,曹步清,张祥平,等. 基于Word2Vec和LDA主题模型的Web服务聚类方法[J]. 中南大学学报(自然科学版), 2018, 49(12):2979-2985. |
XIAO Q X, CAO B Q, ZHANG X P, et al. Web services clustering based on Word2Vec and LDA topic model[J]. Journal of Central South University (Science and Technology), 2018, 49(12):2979-2985. | |
12 | YAN X, GUO J, LAN Y, et al. A biterm topic model for short texts[C]// Proceedings of the 22nd International Conference on World Wide Web. New York: ACM, 2013:1445-1456. 10.1145/2488388.2488514 |
13 | GRIFFITHS T L, STEYVERS M. Finding scientific topics[J].PNAS, 2004, 101(S1):5228-5235. 10.1073/pnas.0307752101 |
14 | ZHANG Y, GONG L, WANG Y. An improved TF-IDF approach for text classification[J]. Journal of Zhejiang University-SCIENCE A, 2005, 6(1): 49-55. 10.1631/jzus.2005.a0049 |
15 | BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022. 10.1145/1015330.1015439 |
16 | CAO B, LIU X, LI B, et al. Mashup service clustering based on an integration of service content and network via exploiting a two-level topic model[C]// Proceedings of the 2016 IEEE International Conference on Web Services. Piscataway: IEEE, 2016: 212-219. 10.1109/icws.2016.35 |
[1] | Shigang YANG, Yongguo LIU. Short text classification method by fusing corpus features and graph attention network [J]. Journal of Computer Applications, 2022, 42(5): 1324-1329. |
[2] | Yu DENG, Xiaoyu LI, Jian CUI, Qi LIU. Multi-head attention memory network for short text sentiment classification [J]. Journal of Computer Applications, 2021, 41(11): 3132-3138. |
[3] | YIN Chunyong, ZHANG Sun. End-to-end adversarial variational Bayes method for short text sentiment classification [J]. Journal of Computer Applications, 2020, 40(9): 2536-2542. |
[4] | ZHANG Xiaochuan, DAI Xuyao, LIU Lu, FENG Tianshuo. Chinese short text classification model with multi-head self-attention mechanism [J]. Journal of Computer Applications, 2020, 40(12): 3485-3489. |
[5] | CHEN Jie, SHAO Zhiqing, ZHANG Huanhuan, FEI Jiahui. Short text sentiment analysis based on parallel hybrid neural network model [J]. Journal of Computer Applications, 2019, 39(8): 2192-2197. |
[6] | HE Yunhua, NIU Tong, LIU Tianyi, XIAO Ke, LU Xiang. Design and optimization of network anonymous scanning system [J]. Journal of Computer Applications, 2019, 39(5): 1385-1388. |
[7] | CAO Dawei, HE Chaobo, CHEN Qimai, LIU Hai. Short text clustering algorithm based on weighted kernel nonnegative matrix factorization [J]. Journal of Computer Applications, 2018, 38(8): 2180-2184. |
[8] | LIU Zhanghu, CHENG Chunling. Variance reduced stochastic variational inference algorithm for topic modeling of large-scale data [J]. Journal of Computer Applications, 2018, 38(6): 1675-1681. |
[9] | DENG Yang, ZHANG Chenxi, LI Jiangfeng. Video shot recommendation model based on emotion analysis using time-sync comments [J]. Journal of Computer Applications, 2017, 37(4): 1065-1070. |
[10] | XING Jinbiao, CUI Chaoyuan, SUN Bingyu, SONG Liangtu. Microblog advertisement filtering method based on classification feature extension of latent Dirichlet allocation [J]. Journal of Computer Applications, 2016, 36(8): 2257-2261. |
[11] | ZHANG Jiujie, ZHAI Ye, WANG Chunhui, ZHANG Liping, LIU Dongsheng. Evolution pattern recognition and genealogy construction based on clone mapping of versions [J]. Journal of Computer Applications, 2016, 36(7): 2021-2030. |
[12] | LI Yaxing, WANG Zhaokai, FENG Xupeng, LIU Lijun, HUANG Qingsong. Micro-blog hot-spot topic discovery based on real-time word co-occurrence network [J]. Journal of Computer Applications, 2016, 36(5): 1302-1306. |
[13] | HU Zhikun, SONG Jingye, CHEN Yuan. Random service system model based on UPnP service discovery [J]. Journal of Computer Applications, 2016, 36(3): 591-595. |
[14] | LU Ling, YANG Wu, CAO Qiong. Automatic short text summarization method based on multiple mapping [J]. Journal of Computer Applications, 2016, 36(2): 432-436. |
[15] | CHEN Qian, GUI Zhiguo, GUO Xin, XIANG Yang. Topic evolution in text stream based on feature ontology [J]. Journal of Computer Applications, 2015, 35(2): 456-460. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||