[1] 张膂.基于餐饮评论的情感倾向性分析[D].昆明:昆明理工大学,2016:1. (ZHANG L. Analysis of sentiment orientation based on restaurant reviews[D]. Kunming:Kunming University of Science and Technology, 2016:1.) [2] LIU B. Sentiment analysis and opinion mining[C]//Proceedings of the 2012 Synthesis Lectures on Human Language Technologies. Vermont, Australia:Morgan & Claypool Publishers, 2012:152-153. [3] 王文凯,王黎明,柴玉梅.基于卷积神经网络和Tree-LSTM的微博情感分析[J].计算机应用研究,2019,36(5):1371-1375. (WANG W K, WANG L M, CHAI Y M. Sentiment analysis of micro-blog based on CNN and Tree-LSTM[J]. Application Research of Computers, 2019, 36(5):1371-1375.) [4] LI Y, CAI Y, LEUNG H F, et al. Improving short text modeling by two-level attention networks for sentiment classification[C]//Proceedings of the 2018 International Conference on Database Systems for Advanced Applications, LNCS 10827. Cham:Springer, 2018:878-890. [5] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. New York:ACM, 2014:1746-1751. [6] KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A convolutional neural network for modelling sentences[C]//Proceedings of the 2014 Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2014:655-665. [7] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. [8] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9:1735-1780. [9] CHO K, van MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language. Stroudsburg, PA:Association for Computational Linguistics, 2014:1724-1734. [10] 王伟,孙玉霞,齐庆杰,等.基于BiGRU-Attention神经网络的文本情感分类模型[J/OL].计算机应用研究,2018[2018-10-15]. http://kns.cnki.net/KCMS/detail/51.1196.TP.20181011.1246.010.html. (WANG W, SUN Y X, QI Q J et al. Text sentiment classification model based on BiGRU-attention neural network[J/OL]. Application Research of Computers, 2018[2018-10-15]. http://kns.cnki.net/KCMS/detail/51.1196.TP.20181011.1246.010.html.) [11] MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2014:2204-2212. [12] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J/OL].[2016-05-19]. http://www.arxiv.org/abs/1409.0473. [13] LUONG M T, PHAM H, MANNING C D. Effective approaches to attention-based neural machine translation[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language. Stroudsburg, PA:Association for Computational Linguistics, 2015:1412-1421. [14] YIN W, SCHVTZE H, XIANG B, et al. ABCNN:attention-based convolutional neural network for modeling sentence pairs[J]. Transactions of the Association for Computational Linguistics, 2016, 4:566-567. [15] ZHANG X, ZHAO J, LECUN Y. Character-level convolutional networks for text classification[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2015:649-657. [16] 刘龙飞,杨亮,张绍武,等.基于卷积神经网络的微博情感倾向性分析[J].中文信息学报,2015,29(6):159-165. (LIU L F, YANG L, ZHANG S W, et al. Convolutional neural networks for chinese micro-blog sentiment analysis[J]. Journal of Chinese Information Processing, 2015, 29(6):159-165.) [17] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. North Miami Beach, FL:Curran Associates Inc., 2013,2:3111-3119. [18] DEY R, SALEMT F M. Gate-variants of Gated Recurrent Unit (GRU) neural networks[C]//Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems. Piscataway, NJ:IEEE, 2017:1597-1600. [19] ZHANG Y, WALLACE B. A sensitivity analysis of (and practitioners' guide to) convolutional neural networks for sentence classification[J]. arXiv E-print, 2016:arXiv:1510.03820. [20] LAI S, XU L, LIU K, et al. Recurrent convolutional neural networks for text classification[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2015:2267-2273. |