Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (12): 3590-3595.DOI: 10.11772/j.issn.1001-9081.2021061011
Special Issue: 第十八届中国机器学习会议(CCML 2021)
• The 18th China Conference on Machine Learning • Previous Articles Next Articles
Yunpeng GONG, Zhiyong ZENG(), Feng YE
Received:
2021-05-12
Revised:
2021-07-06
Accepted:
2021-07-07
Online:
2021-12-28
Published:
2021-12-10
Contact:
Zhiyong ZENG
About author:
GONG Yunpeng, born in 1994, M. S. candidate. His research interests include computer vison, person re-identification.通讯作者:
曾智勇
作者简介:
龚云鹏(1994—),男,福建泉州人,硕士研究生,主要研究方向:计算机视觉、行人重识别CLC Number:
Yunpeng GONG, Zhiyong ZENG, Feng YE. Person re-identification method based on grayscale feature enhancement[J]. Journal of Computer Applications, 2021, 41(12): 3590-3595.
龚云鹏, 曾智勇, 叶锋. 基于灰度域特征增强的行人重识别方法[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3590-3595.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021061011
数据集 | 各指标上的灰度贡献率 | |||
---|---|---|---|---|
Rank-1 | Rank-5 | Rank-10 | mAP | |
Market-1501[ | 89.3 | 95.4 | 97.5 | 73.4 |
DukeMTMC[ | 91.5 | 94.1 | 95.6 | 77.7 |
MSMT17[ | 87.2 | 91.7 | 99.2 | 70.6 |
Tab. 1 Grayscale contribution rate on each evaluation index on different datasets
数据集 | 各指标上的灰度贡献率 | |||
---|---|---|---|---|
Rank-1 | Rank-5 | Rank-10 | mAP | |
Market-1501[ | 89.3 | 95.4 | 97.5 | 73.4 |
DukeMTMC[ | 91.5 | 94.1 | 95.6 | 77.7 |
MSMT17[ | 87.2 | 91.7 | 99.2 | 70.6 |
方法 | Rank-1 | mAP |
---|---|---|
IANet(CVPR19) | 94.4 | 83.1 |
DGNet(CVPR19) | 94.8 | 86.0 |
SCAL (ICCV19) | 95.8 | 89.3 |
Circle Loss (CVPR20) | 96.1 | 87.4 |
SB (CVPR19) | 94.5 | 85.9 |
SB + reRank | 95.4 | 94.2 |
SB + GGT | 94.6(+0.1) | 85.7 |
SB + GGT+ reRank | 96.2(+0.8) | 94.7(+0.5) |
SB + LGT | 95.1(+0.6) | 87.2(+1.3) |
SB + LGT + reRank | 95.9(+0.5) | 94.4(+0.2) |
FR | 96. 3 | 90.3 |
FR+ reRank | 96.8 | 95.3 |
FR + GGT | 96.5(+0.2) | 91.2(+0.9) |
FR + GGT + reRank | 96.9(+0.1) | 95.6(+0.3) |
Tab.2 Performance comparison of different methods on Market-1501 dataset
方法 | Rank-1 | mAP |
---|---|---|
IANet(CVPR19) | 94.4 | 83.1 |
DGNet(CVPR19) | 94.8 | 86.0 |
SCAL (ICCV19) | 95.8 | 89.3 |
Circle Loss (CVPR20) | 96.1 | 87.4 |
SB (CVPR19) | 94.5 | 85.9 |
SB + reRank | 95.4 | 94.2 |
SB + GGT | 94.6(+0.1) | 85.7 |
SB + GGT+ reRank | 96.2(+0.8) | 94.7(+0.5) |
SB + LGT | 95.1(+0.6) | 87.2(+1.3) |
SB + LGT + reRank | 95.9(+0.5) | 94.4(+0.2) |
FR | 96. 3 | 90.3 |
FR+ reRank | 96.8 | 95.3 |
FR + GGT | 96.5(+0.2) | 91.2(+0.9) |
FR + GGT + reRank | 96.9(+0.1) | 95.6(+0.3) |
方法 | Rank-1 | mAP |
---|---|---|
IANet(CVPR19) | 87.1 | 73.4 |
DGNet(CVPR19) | 86.6 | 74.8 |
SCAL (ICCV19) | 89.0 | 79.6 |
SB (CVPR19) | 86.4 | 76.4 |
SB + reRank | 90.3 | 89.1 |
SB + GGT | 87.8(+1.4) | 77.3(+0.9) |
SB + GGT+ reRank | 90.9(+0.6) | 89.2(+0.1) |
SB + LGT | 87.3(+0.9) | 77.3(+0.9) |
SB + LGT + reRank | 91.0(+0.7) | 89.4(+0.3) |
FR | 92.4 | 83.2 |
FR + reRank | 94.4 | 92.2 |
FR + LGT | 92.8(+0.4) | 84.2(+1) |
FR + LGT + reRank | 94.3 | 92.7(+0.5) |
Tab.3 Performance comparison of different methods on DukeMTMC dataset
方法 | Rank-1 | mAP |
---|---|---|
IANet(CVPR19) | 87.1 | 73.4 |
DGNet(CVPR19) | 86.6 | 74.8 |
SCAL (ICCV19) | 89.0 | 79.6 |
SB (CVPR19) | 86.4 | 76.4 |
SB + reRank | 90.3 | 89.1 |
SB + GGT | 87.8(+1.4) | 77.3(+0.9) |
SB + GGT+ reRank | 90.9(+0.6) | 89.2(+0.1) |
SB + LGT | 87.3(+0.9) | 77.3(+0.9) |
SB + LGT + reRank | 91.0(+0.7) | 89.4(+0.3) |
FR | 92.4 | 83.2 |
FR + reRank | 94.4 | 92.2 |
FR + LGT | 92.8(+0.4) | 84.2(+1) |
FR + LGT + reRank | 94.3 | 92.7(+0.5) |
方法 | Rank-1 | mAP |
---|---|---|
IANet (CVPR19) | 75.5 | 46.8 |
DGNet(CVPR19) | 77.2 | 52.3 |
RGA-SC(CVPR20) | 80.3 | 57.5 |
AdaptiveReID | 81.7 | 62.2 |
FR | 85.1 | 63.3 |
FR + GGT(ours) | 86.2(+1.1) | 65.3(+2) |
FR + GGT&LGT(ours) | 86.2(+1.1) | 65.9(+2.6) |
Tab.4 Performance comparison of different methods on MSMT17 dataset
方法 | Rank-1 | mAP |
---|---|---|
IANet (CVPR19) | 75.5 | 46.8 |
DGNet(CVPR19) | 77.2 | 52.3 |
RGA-SC(CVPR20) | 80.3 | 57.5 |
AdaptiveReID | 81.7 | 62.2 |
FR | 85.1 | 63.3 |
FR + GGT(ours) | 86.2(+1.1) | 65.3(+2) |
FR + GGT&LGT(ours) | 86.2(+1.1) | 65.9(+2.6) |
方法 | 跨域方向 | |||
---|---|---|---|---|
M→D | D→M | |||
Rank-1 | mAP | Rank-1 | mAP | |
SB+REA+reRank | 33.6 | 24.3 | 51.6 | 32.3 |
SB+REA+GGT+reRank | 37.8 | 27.8 | 55.4 | 35.7 |
SB-REA+reRank | 45.5 | 37.0 | 58.2 | 37.8 |
SB-REA+GGT+reRank | 48.2 | 37.9 | 65.0 | 43.7 |
Tab.5 Cross-domain performance comparison of global grayscale transformation with random erasing
方法 | 跨域方向 | |||
---|---|---|---|---|
M→D | D→M | |||
Rank-1 | mAP | Rank-1 | mAP | |
SB+REA+reRank | 33.6 | 24.3 | 51.6 | 32.3 |
SB+REA+GGT+reRank | 37.8 | 27.8 | 55.4 | 35.7 |
SB-REA+reRank | 45.5 | 37.0 | 58.2 | 37.8 |
SB-REA+GGT+reRank | 48.2 | 37.9 | 65.0 | 43.7 |
1 | LENG Q M, YE M, TIAN Q. A survey of open-world person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(4):1092-1108. 10.1109/tcsvt.2019.2898940 |
2 | ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification: a benchmark[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015:1116-1124. 10.1109/iccv.2015.133 |
3 | ZHENG Z D, ZHENG L, YANG Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 3774-3782. 10.1109/iccv.2017.405 |
4 | WEI L H, ZHANG S L, GAO W, et al. Person transfer GAN to bridge domain gap for person re-identification[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 79-88. 10.1109/cvpr.2018.00016 |
5 | ZHENG Z D, YANG X D, YU Z D, et al. Joint discriminative and generative learning for person re-identification[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2133-2142. 10.1109/cvpr.2019.00224 |
6 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2672-2680. |
7 | ZHONG Z, ZHENG L, ZHENG Z D, et al. Camera style adaptation for person re-identification[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5157-5166. 10.1109/cvpr.2018.00541 |
8 | QIAN X L, FU Y W, XIANG T, et al. Pose-normalized image generation for person re-identification[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS11213. Cham: Springer, 2018: 661-678. |
9 | ZHONG Z, ZHENG L, KANG G L, et al. Random erasing data augmentation[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 13001-13008. 10.1609/aaai.v34i07.7000 |
10 | FAN X, JIANG W, LUO H, et al. SphereReID: deep hypersphere manifold embedding for person re-identification[J]. Journal of Visual Communication and Image Representation, 2019, 60(4): 51-58. 10.1016/j.jvcir.2019.01.010 |
11 | ZHONG Z, ZHENG L, CAO D L, et al. Re-ranking person re-identification with k-reciprocal encoding[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 3652-3661. 10.1109/cvpr.2017.389 |
12 | SUN Y F, CHENG C M, ZHANG Y H, et al. Circle Loss: a unified perspective of pair similarity optimization[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 6397-6406. 10.1109/cvpr42600.2020.00643 |
13 | HOU R B, MA B P, CHANG H, et al. Interaction-and-aggregation network for person re-identification[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9309-9318. 10.1109/cvpr.2019.00954 |
14 | NI X Y, FANG L, HUTTUNEN H. Adaptive L2 regularization in person re-identification[EB/OL]. (2020-10-18) [2021-04-22].. 10.1109/icpr48806.2021.9412481 |
15 | ZHOU K Y, YANG Y X, CAVALLARO A, et al. Omni-scale feature learning for person re-identification[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3701-3711. 10.1109/iccv.2019.00380 |
16 | LUO H, JIANG W, ZHANG X, et al. AlignedReID++: dynamically matching local information for person re-identification[J]. Pattern Recognition, 2019, 94: 53-61. 10.1016/j.patcog.2019.05.028 |
17 | DeVRIES T, TAYLOR G W. Improved regularization of convolutional neural networks with cutout[EB/OL]. (2017-11-29) [2021-04-22].. |
18 | CHEN B H, DENG W H, HU J N. Mixed high-order attention network for person re-identification[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 371-381. 10.1109/iccv.2019.00046 |
19 | ZHANG Z Z, LAN C L, ZENG W J, et al. Relation-aware global attention for person re-identification[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3183-3192. 10.1109/cvpr42600.2020.00325 |
20 | ZHENG Z D. PyTorch ReID: a tiny, friendly, strong PyTorch implement of person re-identification baseline[CP/OL]. [2021-04-22].. 10.1109/iccv.2017.405 |
21 | LUO H, GU Y Z, LIAO X Y, et al. Bag of tricks and a strong baseline for deep person re-identification[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1487-1495. 10.1109/cvprw.2019.00190 |
22 | HE L X, LIAO X Y, LIU W, et al. FastReID: a PyTorch toolbox for general instance re-identification[EB/OL]. (2020-07-15) [2021-04-22].. |
23 | HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS9908. Cham: Springer, 2016: 630-645. |
24 | PAN X G, LUO P, SHI J P, et al. Two at once: enhancing learning and generalization capacities via IBN-Net[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS11208. Cham: Springer, 2018: 484-500. |
[1] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[2] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[3] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[4] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[5] | Jieru JIA, Jianchao YANG, Shuorui ZHANG, Tao YAN, Bin CHEN. Unsupervised person re-identification based on self-distilled vision Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2893-2902. |
[6] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[7] | Shuai FU, Xiaoying GUO, Ruyi BAI, Tao YAN, Bin CHEN. Age estimation method combining improved CloFormer model and ordinal regression [J]. Journal of Computer Applications, 2024, 44(8): 2372-2380. |
[8] | Cui WANG, Miaolei DENG, Dexian ZHANG, Lei LI, Xiaoyan YANG. Review of end-to-end person search algorithms based on images [J]. Journal of Computer Applications, 2024, 44(8): 2544-2550. |
[9] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[10] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[11] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[12] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[13] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[14] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
[15] | Sailong SHI, Zhiwen FANG. Gaze estimation model based on multi-scale aggregation and shared attention [J]. Journal of Computer Applications, 2024, 44(7): 2047-2054. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||