[1] SINDAGI V A,PATEL V M. A survey of recent advances in CNNbased single image crowd counting and density estimation[J]. Pattern Recognition Letters,2018,107:3-16. [2] 何鹏, 麻文华, 黄磊, 等. 实时人数计数系统[J]. 中国图象图形学报,2011,16(5):813-820.(HE P,MA W H,HUANG L,et al. Real-time people counting system[J]. Journal of Image and Graphics,2011,16(5):813-820.) [3] GAO C,LI P,ZHANG Y J,et al. People counting based on head detection combining Adaboost and CNN in crowded surveillance environment[J]. Neurocomputing,2016,208:108-116. [4] ZHANG C,LI H,WANG X,et al. Cross-scene crowd counting via deep convolutional neural networks[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:833-841. [5] ZHANG Y, ZHOU D, CHEN S, et al. Single-image crowd counting via multi-column convolutional neural network[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:589-597. [6] SAM D B,SURYA S,BABU R V. Switching convolutional neural network for crowd counting[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:4031-4039. [7] ZHANG L,SHI M,CHEN Q. Crowd counting via scale-adaptive convolutional neural network[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway:IEEE,2018:1113-1121. [8] PU S,SONG T,ZHANG Y,et al. Estimation of crowd density in surveillance scenes based on deep convolutional neural network[J]. Procedia Computer Science,2017,111:154-159. [9] 郭继昌, 李翔鹏. 基于卷积神经网络和密度分布特征的人数统计方法[J]. 电子科技大学学报,2018,47(6):806-813.(GUO J C,LI X P. A crowd counting method based on convolutional neural networks and density distribution features[J]. Journal of University of Electronic Science and Technology of China,2018,47(6):806-813.) [10] XU M,GE Z,JIANG X,et al. Depth information guided crowd counting for complex crowd scenes[J]. Pattern Recognition Letters,2019,125:563-569. [11] MA J,DAI Y,TAN Y P. Atrous convolutions spatial pyramid network for crowd counting and density estimation[J]. Neurocomputing,2019,350:91-101. [12] 陆金刚, 张莉. 基于多尺度多列卷积神经网络的密集人群计数模型[J]. 计算机应用,2019,39(12):3445-3449.(LU J G, ZHANG L. Crowd counting model based on multi-scale multicolumn convolutional neural network[J]. Journal of Computer Applications,2019,39(12):3445-3449.) [13] 马皓, 殷保群, 彭思凡. 基于特征金字塔网络的人群计数算法[J]. 计算机工程,2019,45(7):203-207.(MA H,YIN B Q, PENG S F. Crowd counting algorithm based on feature pyramid network[J]. Computer Engineering,2019,45(7):203-207.) [14] 郭瑞琴, 陈雄杰, 骆炜, 等. 基于优化的Inception-ResNet-A模块与Gradient Boosting的人群计数方法[J]. 同济大学学报(自然科学版),2019,47(8):1216-1224.(GUO R Q,CHEN X J, LUO W,et al. A method of crowd counting based on improved Inception-ResNet-A module with Gradient Boosting[J]. Journal of Tongji University(Natural Science),2019,47(8):1216-1224.) [15] ZHU M, WANG X, TANG J, et al. Attentive multi-stage convolutional neural network for crowd counting[J]. Pattern Recognition Letters,2020,135:279-285. [16] WANG S,LU Y,ZHOU T,et al. SCLNet:spatial context learning network for congested crowd counting[J]. Neurocomputing,2020,404:227-239. [17] LIU W,SALZMANN M,FUA P. Context-aware crowd counting[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:5094-5103. [18] WANG Z,CHEN T,LI G,et al. Multi-label image recognition by recurrently discovering attentional regions[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:464-472. [19] JADERBERG M,SIMONYAN K,ZISSERMAN A,et al. Spatial transformer networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2015:2017-2025. [20] LI L,YANG Z,JIAO L,et al. High-resolution SAR change detection based on ROI and SPP net[J]. IEEE Access,2019,7:177009-177022. |