[1] TING H Y,SIM K S,ABAS F S. Automatic badminton action recognition using RGB-D sensor[J]. Advanced Materials Research,2014,1042:89-93. [2] KUO Y M,LEE J S,CHUNG P C. A visual context-awarenessbased sleeping-respiration measurement system[J]. IEEE Transactions on Information Technology in Biomedicine,2010,14(2):255-265. [3] VANDO S,HADDAD M,MASALA D,et al. Visual feedback training in young karate athletes[J]. Muscles,Ligaments and Tendons Journal,2014,4(2):137-140. [4] JONES C M,GRIFFITHS P C,MELLALIEU S D. Training load and fatigue marker associations with injury and illness:a systematic review of longitudinal studies[J]. Sports Medicine,2017,47(5):943-974. [5] HALSON S L. Monitoring training load to understand fatigue in athletes[J]. Sports Medicine,2014,44(S2):139-147. [6] 吕咏. 从符号互动理论看当今社会运动健身类APP热的现象——以keep app为例[C]//第十一届全国体育科学大会论文摘要汇编. 南京:中国体育科学学会,2019:4330-4332.(LYU Y. On the phenomenon of sports and fitness apps in current society from the perspective of symbolic interaction theory-taking Keep APP as an example[C]//Proceedings of the 11th National Convention on Sports Science of China-Abstracts. Nanjing:China Sport Science Society,2019:4330-4332.) [7] SIGRIST R,RAUTER G,RIENER R,et al. Augmented visual, auditory,haptic,and multimodal feedback in motor learning:a review[J]. Psychonomic Bulletin and Review,2013,20(1):21-53. [8] 王瑞元, 苏全生. 运动生理学[M]. 北京:人民体育出版社, 2012:295-296.(WANG R U,SU Q S. Sports Physiology[M]. Beijing:People's Sports Press,2012:295-296.) [9] LUCAS T. Exploring the effect of realism at the cognitive stage of complex motor skill learning[J]. E-Learning and Digital Media, 2019,16(4):242-266. [10] HUANG C C,LIU H M,HUANG C L. Intelligent scheduling of execution for customized physical fitness and healthcare system[J]. Technology and Health Care,2016,24(S1):S385-S392. [11] HUANG C C,HUANG C L,LIU H M. Fool-proofing design and crisis management for customized intelligent physical fitness and healthcare system[J]. Technology and Health Care,2016,24(S1):407-413. [12] QI J,YANG P,HANNEGHAN M,et al. A hybrid hierarchical framework for gym physical activity recognition and measurement using wearable sensors[J]. IEEE Internet of Things Journal, 2019,6(2):1384-1393. [13] HAUSBERGER P,FERNBACH A,KASTNER W. IMU-based smart fitness devices for weight training[C]//Proceedings of the 42nd Annual Conference of the IEEE Industrial Electronics Society. Piscataway:IEEE,2016:5182-5189. [14] ÖRÜCÜ S,SELEK M. Design and validation of rule-based expert system by using Kinect V2 for real-time athlete support[J]. Applied Sciences,2020,10(2):No. 611. [15] SHIH H C. A survey of content-aware video analysis for sports[J]. IEEE Transactions on Circuits and Systems for Video Technology,2018,28(5):1212-1231. [16] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:4489-4497. [17] SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:568-576. [18] KARPATHY A,TODERICI G,SHETTY S,et al. Large-scale video classification with convolutional neural networks[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2014:1725-1732. [19] WANG L, XIONG Y, WANG Z, et al. Temporal segment networks:towards good practices for deep action recognition[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9912. Cham:Springer,2016:20-36. [20] ZHU W,HU J,SUN G,et al. A key volume mining deep framework for action recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1991-1999. [21] 左国玉, 徐兆坤, 卢佳豪, 等. 基于结构优化的DDAG-SVM上肢康复训练动作识别方法[J]. 自动化学报,2020,46(3):549-561.(ZUO G Y,XU Z K,LU J H,et al. A structure-optimized DDAG-SVM action recognition method for upper limb rehabilitation training[J]. Acta Automatica Sinica,2020,46(3):549-561.) [22] 闫航, 陈刚, 佟瑶, 等. 基于姿态估计与GRU网络的人体康复动作识别[J]. 计算机工程,2021,47(1):12-20.(YAN H,CHEN G,TONG Y,et al. Human rehabilitation action recognition based on pose estimation and GRU network[J]. Computer Engineering, 2021,47(1):12-20.) [23] LI H,TANG J,WU S,et al. Automatic detection and analysis of player action in moving background sports video sequences[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010,20(3):351-364. [24] BLANK M,GORELICK L,SHECHTMAN E,et al. Actions as spacetime shapes[C]//Proceedings of the 10th IEEE International Conference on Computer Vision. Piscataway:IEEE,2005:1395-1402. [25] BOBICK A F,DAVIS J W. The recognition of human movement using temporal templates[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(3):257-267. [26] SCHÜLDT C, LAPTEV I, CAPUTO B. Recognizing human actions:a local SVM approach[C]//Proceedings of the 17th International Conference on Pattern Recognition. Piscataway:IEEE,2004:32-36. [27] NIEBLES J C,WANG H,LI F F. Unsupervised learning of human action categories using spatial-temporal words[J]. International Journal of Computer Vision,2008,79(3):299-318. [28] SALES DE SOUZA L, GATTO B B, FUKUI K. Enhancing discriminability of randomized time warping for motion recognition[C]//Proceedings of the 15th IAPR International Conference on Machine Vision Applications. Piscataway:IEEE,2017:77-80. [29] THURAU C. Behavior histograms for action recognition and human detection[C]//Proceedings of the 2007 Workshop on Human Motion,LNCS 4814. Berlin:Springer,2007:299-312. [30] KUMARI S,MITRA S K. Human action recognition using DFT[C]//Proceedings of the 3rd National Conference on Computer Vision,Pattern Recognition,Image Processing and Graphics. Piscataway:IEEE,2011:239-242. [31] CHERLA S,KULKARNI K,KALE A,et al. Towards fast,viewinvariant human action recognition[C]//Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE,2008:1-8. [32] FANG H,XIE S,TAI Y W,et al. RMPE:regional multi-person pose estimation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:2353-2362. [33] CAO Z,SIMON T,WEI S E,et al. Realtime multi-person 2D pose estimation using part affinity fields[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:1302-1310. [34] BUX A,ANGELOV P,HABIB Z. Vision based human activity recognition:a review[M]//ANGELOV P,GEGOV A,JAYNE C, et al. Advances in Computational Intelligence Systems,AISC 513. Cham:Springer,2017:341-371. [35] YAO A, GALL J, FANELLI G, et al. Does human action recognition benefit from pose estimation?[C]//Proceedings of the 2011 British Machine Vision Conference. Durham:BMVA Press, 2011:No. 67. [36] YAN S,XIONG Y,LIN D. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2018:7444-7452. [37] HSU C W,CHANG C C,LIN C J. A practical guide to support vector classification[J]. BJU International,2008,101(1):1396-1400. [38] RAKTHANMANON T, CAMPANA B, MUEEN A, et al. Searching and mining trillions of time series subsequences under dynamic time warping[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2012:262-270. |