Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (10): 3084-3090.DOI: 10.11772/j.issn.1001-9081.2021081452
Special Issue: 网络空间安全
• Cyber security • Previous Articles Next Articles
Rongkang XI, Manchun CAI, Tianliang LU, Yanlin LI
Received:
2021-08-17
Revised:
2021-12-03
Accepted:
2021-12-06
Online:
2022-01-07
Published:
2022-10-10
Contact:
Manchun CAI
About author:
XI Rongkang, born in 1997, M. S. candidate. His research interests include anonymous communication.Supported by:
席荣康, 蔡满春, 芦天亮, 李彦霖
通讯作者:
蔡满春
作者简介:
第一联系人:席荣康(1997—),男,河南三门峡人,硕士研究生,主要研究方向:匿名通信基金资助:
CLC Number:
Rongkang XI, Manchun CAI, Tianliang LU, Yanlin LI. Tor website traffic analysis model based on self-attention mechanism and spatiotemporal features[J]. Journal of Computer Applications, 2022, 42(10): 3084-3090.
席荣康, 蔡满春, 芦天亮, 李彦霖. 基于自注意力机制和时空特征的Tor网站流量分析模型[J]. 《计算机应用》唯一官方网站, 2022, 42(10): 3084-3090.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021081452
层 | 参数 |
---|---|
数据编码层 | output_dim=128 |
自注意力层 | output_dim=128 |
多核CNN层 | 卷积核尺寸分别为3、4、5, 卷积核个数为32,激活函数ReLU |
LSTM层 | output_dim=128,激活函数为tanh |
全连接层 | Unit设置为2/100,激活函数为Softmax |
Tab. 1 SA-HST model parameters
层 | 参数 |
---|---|
数据编码层 | output_dim=128 |
自注意力层 | output_dim=128 |
多核CNN层 | 卷积核尺寸分别为3、4、5, 卷积核个数为32,激活函数ReLU |
LSTM层 | output_dim=128,激活函数为tanh |
全连接层 | Unit设置为2/100,激活函数为Softmax |
模型 | 准确率 | 模型 | 准确率 |
---|---|---|---|
CNN[ | 89.30 | SA-CNN | 95.73 |
CUMUL[ | 88.40 | SA-HST | 97.14 |
LSTM[ | 89.10 |
Tab. 2 Comparison of model classification accuracy in closed world
模型 | 准确率 | 模型 | 准确率 |
---|---|---|---|
CNN[ | 89.30 | SA-CNN | 95.73 |
CUMUL[ | 88.40 | SA-HST | 97.14 |
LSTM[ | 89.10 |
模型 | 每轮训练时间 | 模型 | 每轮训练时间 |
---|---|---|---|
CNN[ | 149 | SA-CNN | 40 |
LSTM[ | 160 | SA-HST | 155 |
Tab. 3 Comparison of training time per epoch among four models
模型 | 每轮训练时间 | 模型 | 每轮训练时间 |
---|---|---|---|
CNN[ | 149 | SA-CNN | 40 |
LSTM[ | 160 | SA-HST | 155 |
1 | HINTZ A. Fingerprinting websites using traffic analysis[C]// Proceedings of the 2002 International Workshop on Privacy Enhancing Technologies, LNCS 2482. Cham: Springer, 2003: 171-178. |
2 | LIBERATORE M, LEVINE B N. Inferring the source of encrypted HTTP connections[C]// Proceedings of the 13th ACM Conference on Computer and Communications Security. New York: ACM, 2006:255-263. 10.1145/1180405.1180437 |
3 | DINGLEDINE R, MATHEWSON N, SYVERSON P. Tor: the second-generation onion router[C]// Proceedings of the 13th USENIX Security Symposium. Berkeley: USENIX Association, 2004: 303-320. 10.21236/ada465464 |
4 | HAYES J, DANEZIS G. k-fingerprinting: a robust scalable website fingerprinting technique[C]// Proceedings of the 25th USENIX Security Symposium. Berkeley: USENIX Association, 2016: 1187-1203. |
5 | PANCHENKO A, LANZE F, PENNEKAMP J, et al. Website fingerprinting at internet scale[C]// Proceedings of the 23rd Annual Network and Distributed System Security Symposium. Reston, VA: Internet Society, 2016: 1-15. 10.14722/ndss.2016.23477 |
6 | ABE K, GOTO S. Fingerprinting attack on Tor anonymity using deep learning[EB/OL]. (2016-08-01) [2021-08-22].. |
7 | RIMMER V, PREUVENEERS D, JUAREZ M, et al. Automated website fingerprinting through deep learning[C]// Proceedings of the 25th Annual Network and Distributed System Security Symposium. Reston, VA: Internet Society, 2018: 1-15. 10.14722/ndss.2018.23105 |
8 | ZHANG J W, LING Y, FU X B, et al. Model of the intrusion detection system based on the integration of spatial-temporal features[J]. Computers and Security, 2020, 89: No.101681. 10.1016/j.cose.2019.101681 |
9 | 马陈城,杜学绘,曹利峰,等. 基于深度神经网络burst特征分析的网站指纹攻击方法[J]. 计算机研究与发展, 2020, 57(4):746-766. 10.7544/issn1000-1239.2020.20190860 |
MA C C, DU X H, CAO L F, et al. burst-analysis website fingerprinting attack based on deep neural network[J]. Journal of Computer Research and Development, 2020, 57(4): 746-766. 10.7544/issn1000-1239.2020.20190860 | |
10 | 张道维,段海新. 基于图像纹理的网站指纹技术[J]. 计算机应用, 2020, 40(6):1685-1691. 10.11772/j.issn.1001-9081.2019111981 |
ZHANG D W, DUAN H X. Website fingerprinting technique based on image texture[J]. Journal of Computer Applications, 2020, 40(6): 1685-1691. 10.11772/j.issn.1001-9081.2019111981 | |
11 | WANG T, GOLDBERG I. On realistically attacking Tor with website fingerprinting[J]. Proceedings on Privacy Enhancing Technologies, 2016, 2016(4): 21-36. 10.1515/popets-2016-0027 |
12 | SIRINAM P, MATHEWS N, MOHAMMAD M S, et al. Triplet fingerprinting: more practical and portable website fingerprinting with N-shot learning[C]// Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2019: 1131-1148. 10.1145/3319535.3354217 |
13 | ATTARIAN R, ABDI L, HASHEMI S. AdaWFPA: adaptive online website fingerprinting attack for tor anonymous network: a stream-wise paradigm[J]. Computer Communications, 2019, 148: 74-85. 10.1016/j.comcom.2019.09.008 |
14 | 蔡满春,王腾飞,岳婷,等. 基于ARF的Tor网站指纹识别技术[J]. 信息网络安全, 2021, 21(4):39-48. 10.3969/j.issn.1671-1122.2021.04.005 |
CAI M C, WANG T F, YUE T, et al. ARF-based Tor website fingerprint recognition technology[J]. Netinfo Security, 2021, 21(4): 39-48. 10.3969/j.issn.1671-1122.2021.04.005 | |
15 | 高芬,苏依拉,牛向华,等. 基于Transformer的蒙汉神经机器翻译研究[J]. 计算机应用与软件, 2020, 37(2):141-146, 225. 10.3969/j.issn.1000-386x.2020.02.022 |
GAO F, SU Y L, NIU X H, et al. Mongolian-Chinese neural machine translation based on Transformer[J]. Computer Applications and Software, 2020, 37(2): 141-146, 225. 10.3969/j.issn.1000-386x.2020.02.022 | |
16 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. 10.1162/neco.1997.9.8.1735 |
17 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. |
18 | KATHAROPOULOS A, VYAS A, PAPPAS N, et al. Transformers are RNNs: fast autoregressive transformers with linear attention[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 5156-5165. |
19 | 马明艳,陈伟,吴礼发. 基于CNN_BiLSTM的网络入侵检测方法[J]. 计算机工程与应用, 2022, 58(10):116-124. |
MA M Y, CHEN W, WU L F. CNN_BiLSTM network based intrusion detection method[J]. Computer Engineering and Applications, 2022, 58(10):116-124. | |
20 | 李辰,陈浩,李建勋. 多形态卷积并行神经网络建立效能评估指标体系[J]. 电光与控制, 2021, 28(11):31-34, 93. 10.3969/j.issn.1671-637X.2021.11.007 |
LI C, CHEN H, LI J X. An effectiveness evaluation indicator system based on multi-scale parallel convolution neural network[J]. Electronics Optics and Control, 2021, 28(11):31-34, 93. 10.3969/j.issn.1671-637X.2021.11.007 | |
21 | 肖珂,刘天一,孙晓燕,等. 基于增量式卷积神经网络的入侵检测方法[J]. 计算机应用, 2020, 40(S2):73-79. |
XIAO K, LIU T Y, SUN X Y, et al. Intrusion detection method based on incremental convolution neural network[J]. Journal of Computer Applications, 2020, 40(S2): 73-79. | |
22 | 赵恺,石立宝. 基于改进一维卷积神经网络的电力系统暂态稳定评估[J]. 电网技术, 2021, 45(8):2945-2957. |
ZHAO K, SHI L B. Transient stability assessment of power system based on improved one-dimensional convolutional neural network[J]. Power System Technology, 2021, 45(8): 2945-2957. |
[1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[2] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[3] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[4] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
[5] | Yangyi GAO, Tao LEI, Xiaogang DU, Suiyong LI, Yingbo WANG, Chongdan MIN. Crowd counting and locating method based on pixel distance map and four-dimensional dynamic convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2233-2242. |
[6] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. |
[7] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. |
[8] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. |
[9] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. |
[10] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. |
[11] | Wenshuo GAO, Xiaoyun CHEN. Point cloud classification network based on node structure [J]. Journal of Computer Applications, 2024, 44(5): 1471-1478. |
[12] | Min SUN, Qian CHENG, Xining DING. CBAM-CGRU-SVM based malware detection method for Android [J]. Journal of Computer Applications, 2024, 44(5): 1539-1545. |
[13] | Tianhua CHEN, Jiaxuan ZHU, Jie YIN. Bird recognition algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(4): 1114-1120. |
[14] | Lijun XU, Hui LI, Zuyang LIU, Kansong CHEN, Weixuan MA. 3D-GA-Unet: MRI image segmentation algorithm for glioma based on 3D-Ghost CNN [J]. Journal of Computer Applications, 2024, 44(4): 1294-1302. |
[15] | Jie WANG, Hua MENG. Image classification algorithm based on overall topological structure of point cloud [J]. Journal of Computer Applications, 2024, 44(4): 1107-1113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||