Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (5): 1464-1471.DOI: 10.11772/j.issn.1001-9081.2021050753
• Data science and technology • Previous Articles Next Articles
Huanhuan ZHOU1, Bochuan ZHENG2(), Zheng ZHANG1, Qi ZHANG1
Received:
2021-05-11
Revised:
2021-08-27
Accepted:
2021-08-30
Online:
2022-03-08
Published:
2022-05-10
Contact:
Bochuan ZHENG
About author:
ZHOU Huanhuan, born in 1996,M. S. candidate. Her researchinterests include machine learning,clustering analysis.Supported by:
通讯作者:
郑伯川
作者简介:
周欢欢(1996—),女,重庆人,硕士研究生,主要研究方向:机器学习、聚类分析基金资助:
CLC Number:
Huanhuan ZHOU, Bochuan ZHENG, Zheng ZHANG, Qi ZHANG. Density peak clustering algorithm based on adaptive nearest neighbor parameters[J]. Journal of Computer Applications, 2022, 42(5): 1464-1471.
周欢欢, 郑伯川, 张征, 张琦. 基于自适应近邻参数的密度峰聚类算法[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1464-1471.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021050753
数据集 | 实例数 | 维数 | 类数 |
---|---|---|---|
Aggregation | 788 | 2 | 7 |
Pathbased | 300 | 2 | 3 |
Jain | 373 | 2 | 2 |
Flame | 240 | 2 | 2 |
R15 | 600 | 2 | 15 |
Spiral | 312 | 2 | 3 |
D31 | 3 100 | 2 | 31 |
S2 | 5 000 | 2 | 15 |
Tab. 1 Synthetic dataset information
数据集 | 实例数 | 维数 | 类数 |
---|---|---|---|
Aggregation | 788 | 2 | 7 |
Pathbased | 300 | 2 | 3 |
Jain | 373 | 2 | 2 |
Flame | 240 | 2 | 2 |
R15 | 600 | 2 | 15 |
Spiral | 312 | 2 | 3 |
D31 | 3 100 | 2 | 31 |
S2 | 5 000 | 2 | 15 |
数据集 | 实例数 | 维数 | 类数 |
---|---|---|---|
Wine | 178 | 13 | 3 |
Seeds | 210 | 7 | 3 |
Blance Scale | 625 | 4 | 3 |
Segmentation | 2 310 | 19 | 7 |
Tab. 2 UCI dataset information
数据集 | 实例数 | 维数 | 类数 |
---|---|---|---|
Wine | 178 | 13 | 3 |
Seeds | 210 | 7 | 3 |
Blance Scale | 625 | 4 | 3 |
Segmentation | 2 310 | 19 | 7 |
数据集 | 算法 | AMI | ARI | FMI | 参数值 |
---|---|---|---|---|---|
Aggregation | DPC | 1.000 0 | 1.000 0 | 1.000 0 | 3.4 |
DBSCAN | 0.952 9 | 0.977 9 | 0.982 7 | 0.04/6 | |
OPTICS | 0.922 1 | 0.975 3 | 0.980 7 | 0.06/10 | |
AP | 0.787 3 | 0.765 8 | 0.815 0 | ||
K-means | 0.793 5 | 0.730 0 | 0.788 4 | — | |
SNN-DPC | 0.950 0 | 0.959 4 | 0.968 1 | 15 | |
本文算法 | 0.979 4 | 0.985 5 | 0.988 6 | — | |
Pathbased | DPC | 0.521 2 | 0.471 7 | 0.666 4 | 3.8 |
DBSCAN | 0.871 0 | 0.901 1 | 0.934 0 | 0.08/10 | |
OPTICS | 0.436 4 | 0.636 4 | 0.751 7 | 0.06/4 | |
AP | 0.519 9 | 0.477 5 | 0.657 7 | ||
K-means | 0.509 8 | 0.461 3 | 0.661 7 | — | |
SNN-DPC | 0.900 1 | 0.929 4 | 0.952 9 | 9 | |
本文算法 | 0.918 6 | 0.950 2 | 0.966 7 | — | |
Jain | DPC | 0.618 3 | 0.714 6 | 0.881 9 | 0.9 |
DBSCAN | 0.865 0 | 0.975 8 | 0.990 6 | 0.08/2 | |
OPTICS | 0.854 2 | 0.975 6 | 0.990 5 | 0.08/1 | |
AP | 0.658 2 | 0.795 2 | 0.921 2 | ||
K-means | 0.491 6 | 0.576 7 | 0.820 0 | — | |
SNN-DPC | 1.000 0 | 1.000 0 | 1.000 0 | 12 | |
本文算法 | 1.000 0 | 1.000 0 | 1.000 0 | — | |
Flame | DPC | 1.000 0 | 1.000 0 | 1.000 0 | 2.8 |
DBSCAN | 0.823 4 | 0.938 8 | 0.971 2 | 0.09/8 | |
OPTICS | 0.689 8 | 0.896 8 | 0.950 8 | 0.10/8 | |
AP | 0.498 7 | 0.540 3 | 0.749 8 | ||
K-means | 0.386 3 | 0.453 4 | 0.736 4 | — | |
SNN-DPC | 0.897 5 | 0.950 2 | 0.976 8 | 5 | |
本文算法 | 0.830 4 | 0.901 4 | 0.954 8 | — | |
R15 | DPC | 0.993 8 | 0.992 8 | 0.993 2 | 0.6 |
DBSCAN | 0.982 5 | 0.981 9 | 0.983 1 | 0.04/12 | |
OPTICS | 0.973 4 | 0.978 5 | 0.979 9 | 0.04/11 | |
AP | 0.990 7 | 0.989 1 | 0.989 8 | ||
K-means | 0.993 8 | 0.992 8 | 0.993 2 | 15 | |
SNN-DPC | 0.993 8 | 0.992 8 | 0.993 2 | 10 | |
本文算法 | 0.993 8 | 0.992 8 | 0.993 2 | — | |
Spiral | DPC | 1.000 0 | 1.000 0 | 1.000 0 | 1.8 |
DBSCAN | 1.000 0 | 1.000 0 | 1.000 0 | 0.04/2 | |
OPTICS | 1.000 0 | 1.000 0 | 1.000 0 | 0.04/1 | |
AP | 0.293 2 | 0.156 9 | 0.340 9 | ||
K-means | 0.327 4 | — | |||
SNN-DPC | 1.000 0 | 1.000 0 | 1.000 0 | 5 | |
本文算法 | 1.000 0 | 1.000 0 | 1.000 0 | — | |
D31 | DPC | 0.955 4 | 0.936 5 | 0.938 5 | 0.6 |
DBSCAN | 0.889 5 | 0.807 8 | 0.818 6 | 0.04/38 | |
OPTICS | 0.821 1 | 0.867 3 | 0.876 3 | 0.03/23 | |
AP | 0.836 7 | 0.742 5 | 0.766 5 | 0.23 | |
K-means | 0.959 3 | 0.945 3 | 0.947 0 | — | |
SNN-DPC | 0.964 2 | 0.950 9 | 0.952 5 | 41 | |
本文算法 | 0.964 1 | 0.949 7 | 0.951 3 | — | |
S2 | DPC | 0.943 7 | 0.935 2 | 0.939 5 | 1.5 |
DBSCAN | 0.851 1 | 0.748 5 | 0.774 4 | 0.04/30 | |
OPTICS | 0.672 3 | 0.771 3 | 0.789 1 | 0.03/27 | |
AP | 0.461 6 | 0.570 4 | 0.608 0 | ||
K-means | 0.946 1 | 0.937 9 | 0.942 0 | — | |
SNN-DPC | 0.938 6 | 0.926 4 | 0.931 3 | 35 | |
本文算法 | 0.940 5 | 0.927 8 | 0.932 6 | — |
Tab. 3 Clustering results of different algorithms on synthetic datasets
数据集 | 算法 | AMI | ARI | FMI | 参数值 |
---|---|---|---|---|---|
Aggregation | DPC | 1.000 0 | 1.000 0 | 1.000 0 | 3.4 |
DBSCAN | 0.952 9 | 0.977 9 | 0.982 7 | 0.04/6 | |
OPTICS | 0.922 1 | 0.975 3 | 0.980 7 | 0.06/10 | |
AP | 0.787 3 | 0.765 8 | 0.815 0 | ||
K-means | 0.793 5 | 0.730 0 | 0.788 4 | — | |
SNN-DPC | 0.950 0 | 0.959 4 | 0.968 1 | 15 | |
本文算法 | 0.979 4 | 0.985 5 | 0.988 6 | — | |
Pathbased | DPC | 0.521 2 | 0.471 7 | 0.666 4 | 3.8 |
DBSCAN | 0.871 0 | 0.901 1 | 0.934 0 | 0.08/10 | |
OPTICS | 0.436 4 | 0.636 4 | 0.751 7 | 0.06/4 | |
AP | 0.519 9 | 0.477 5 | 0.657 7 | ||
K-means | 0.509 8 | 0.461 3 | 0.661 7 | — | |
SNN-DPC | 0.900 1 | 0.929 4 | 0.952 9 | 9 | |
本文算法 | 0.918 6 | 0.950 2 | 0.966 7 | — | |
Jain | DPC | 0.618 3 | 0.714 6 | 0.881 9 | 0.9 |
DBSCAN | 0.865 0 | 0.975 8 | 0.990 6 | 0.08/2 | |
OPTICS | 0.854 2 | 0.975 6 | 0.990 5 | 0.08/1 | |
AP | 0.658 2 | 0.795 2 | 0.921 2 | ||
K-means | 0.491 6 | 0.576 7 | 0.820 0 | — | |
SNN-DPC | 1.000 0 | 1.000 0 | 1.000 0 | 12 | |
本文算法 | 1.000 0 | 1.000 0 | 1.000 0 | — | |
Flame | DPC | 1.000 0 | 1.000 0 | 1.000 0 | 2.8 |
DBSCAN | 0.823 4 | 0.938 8 | 0.971 2 | 0.09/8 | |
OPTICS | 0.689 8 | 0.896 8 | 0.950 8 | 0.10/8 | |
AP | 0.498 7 | 0.540 3 | 0.749 8 | ||
K-means | 0.386 3 | 0.453 4 | 0.736 4 | — | |
SNN-DPC | 0.897 5 | 0.950 2 | 0.976 8 | 5 | |
本文算法 | 0.830 4 | 0.901 4 | 0.954 8 | — | |
R15 | DPC | 0.993 8 | 0.992 8 | 0.993 2 | 0.6 |
DBSCAN | 0.982 5 | 0.981 9 | 0.983 1 | 0.04/12 | |
OPTICS | 0.973 4 | 0.978 5 | 0.979 9 | 0.04/11 | |
AP | 0.990 7 | 0.989 1 | 0.989 8 | ||
K-means | 0.993 8 | 0.992 8 | 0.993 2 | 15 | |
SNN-DPC | 0.993 8 | 0.992 8 | 0.993 2 | 10 | |
本文算法 | 0.993 8 | 0.992 8 | 0.993 2 | — | |
Spiral | DPC | 1.000 0 | 1.000 0 | 1.000 0 | 1.8 |
DBSCAN | 1.000 0 | 1.000 0 | 1.000 0 | 0.04/2 | |
OPTICS | 1.000 0 | 1.000 0 | 1.000 0 | 0.04/1 | |
AP | 0.293 2 | 0.156 9 | 0.340 9 | ||
K-means | 0.327 4 | — | |||
SNN-DPC | 1.000 0 | 1.000 0 | 1.000 0 | 5 | |
本文算法 | 1.000 0 | 1.000 0 | 1.000 0 | — | |
D31 | DPC | 0.955 4 | 0.936 5 | 0.938 5 | 0.6 |
DBSCAN | 0.889 5 | 0.807 8 | 0.818 6 | 0.04/38 | |
OPTICS | 0.821 1 | 0.867 3 | 0.876 3 | 0.03/23 | |
AP | 0.836 7 | 0.742 5 | 0.766 5 | 0.23 | |
K-means | 0.959 3 | 0.945 3 | 0.947 0 | — | |
SNN-DPC | 0.964 2 | 0.950 9 | 0.952 5 | 41 | |
本文算法 | 0.964 1 | 0.949 7 | 0.951 3 | — | |
S2 | DPC | 0.943 7 | 0.935 2 | 0.939 5 | 1.5 |
DBSCAN | 0.851 1 | 0.748 5 | 0.774 4 | 0.04/30 | |
OPTICS | 0.672 3 | 0.771 3 | 0.789 1 | 0.03/27 | |
AP | 0.461 6 | 0.570 4 | 0.608 0 | ||
K-means | 0.946 1 | 0.937 9 | 0.942 0 | — | |
SNN-DPC | 0.938 6 | 0.926 4 | 0.931 3 | 35 | |
本文算法 | 0.940 5 | 0.927 8 | 0.932 6 | — |
数据集 | 算法 | AMI | ARI | FMI | 参数值 |
---|---|---|---|---|---|
Wine | DPC | 0.706 5 | 0.672 4 | 0.783 5 | 2.0 |
DBSCAN | 0.548 4 | 0.529 2 | 0.712 1 | 0.50/21 | |
OPTICS | 0.369 8 | 0.411 9 | 0.629 6 | 0.59/7 | |
AP | 0.333 0 | 0.317 0 | 0.612 6 | ||
K-means | 0.847 3 | 0.868 5 | 0.912 6 | — | |
SNN-DPC | 0.873 5 | 0.899 2 | 0.933 0 | 18 | |
本文算法 | 0.876 9 | 0.899 2 | 0.933 0 | — | |
Seeds | DPC | 0.729 9 | 0.767 0 | 0.844 4 | 0.7 |
DBSCAN | 0.530 2 | 0.529 1 | 0.671 1 | 0.24/16 | |
OPTICS | 0.380 2 | 0.419 0 | 0.635 0 | 0.81/5 | |
AP | 0.446 5 | 0.393 6 | 0.693 3 | ||
K-means | 0.670 5 | 0.704 9 | 0.802 6 | — | |
SNN-DPC | 0.750 9 | 0.789 0 | 0.827 6 | 6 | |
本文算法 | 1.000 0 | 1.000 0 | 1.000 0 | — | |
Blance Scale | DPC | 0.115 4 | 0.139 4 | 0.502 4 | 1.1 |
DBSCAN | 0.090 2 | 0.139 4 | 0.151 0 | 0.03/1 | |
OPTICS | 0.063 3 | 0.106 2 | 0.116 5 | 0.03/2 | |
AP | 0.090 2 | 0.142 0 | 0.155 3 | 0.97 | |
K-means | 0.013 2 | 0.001 5 | 0.044 4 | — | |
SNN-DPC | 0.003 5 | 0.005 4 | 0.383 4 | 20 | |
本文算法 | 0.049 6 | 0.003 0 | 0.440 3 | — | |
Segmentation | DPC | 0.692 7 | 0.600 4 | 0.673 0 | 1.5 |
DBSCAN | 0.496 5 | 0.454 3 | 0.527 7 | 0.15/2 | |
OPTICS | 0.431 2 | 0.460 0 | 0.536 1 | 0.15/1 | |
AP | 0.208 9 | 0.344 5 | 0.340 9 | 1.80 | |
K-means | 0.610 2 | 0.504 9 | 0.575 8 | — | |
SNN-DPC | 0.592 9 | 0.405 3 | 0.519 9 | 7 | |
本文算法 | 0.691 9 | 0.570 0 | 0.646 6 | — |
Tab. 4 Clustering results of different algorithms on UCI datasets
数据集 | 算法 | AMI | ARI | FMI | 参数值 |
---|---|---|---|---|---|
Wine | DPC | 0.706 5 | 0.672 4 | 0.783 5 | 2.0 |
DBSCAN | 0.548 4 | 0.529 2 | 0.712 1 | 0.50/21 | |
OPTICS | 0.369 8 | 0.411 9 | 0.629 6 | 0.59/7 | |
AP | 0.333 0 | 0.317 0 | 0.612 6 | ||
K-means | 0.847 3 | 0.868 5 | 0.912 6 | — | |
SNN-DPC | 0.873 5 | 0.899 2 | 0.933 0 | 18 | |
本文算法 | 0.876 9 | 0.899 2 | 0.933 0 | — | |
Seeds | DPC | 0.729 9 | 0.767 0 | 0.844 4 | 0.7 |
DBSCAN | 0.530 2 | 0.529 1 | 0.671 1 | 0.24/16 | |
OPTICS | 0.380 2 | 0.419 0 | 0.635 0 | 0.81/5 | |
AP | 0.446 5 | 0.393 6 | 0.693 3 | ||
K-means | 0.670 5 | 0.704 9 | 0.802 6 | — | |
SNN-DPC | 0.750 9 | 0.789 0 | 0.827 6 | 6 | |
本文算法 | 1.000 0 | 1.000 0 | 1.000 0 | — | |
Blance Scale | DPC | 0.115 4 | 0.139 4 | 0.502 4 | 1.1 |
DBSCAN | 0.090 2 | 0.139 4 | 0.151 0 | 0.03/1 | |
OPTICS | 0.063 3 | 0.106 2 | 0.116 5 | 0.03/2 | |
AP | 0.090 2 | 0.142 0 | 0.155 3 | 0.97 | |
K-means | 0.013 2 | 0.001 5 | 0.044 4 | — | |
SNN-DPC | 0.003 5 | 0.005 4 | 0.383 4 | 20 | |
本文算法 | 0.049 6 | 0.003 0 | 0.440 3 | — | |
Segmentation | DPC | 0.692 7 | 0.600 4 | 0.673 0 | 1.5 |
DBSCAN | 0.496 5 | 0.454 3 | 0.527 7 | 0.15/2 | |
OPTICS | 0.431 2 | 0.460 0 | 0.536 1 | 0.15/1 | |
AP | 0.208 9 | 0.344 5 | 0.340 9 | 1.80 | |
K-means | 0.610 2 | 0.504 9 | 0.575 8 | — | |
SNN-DPC | 0.592 9 | 0.405 3 | 0.519 9 | 7 | |
本文算法 | 0.691 9 | 0.570 0 | 0.646 6 | — |
1 | DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm [J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39 (1): 1-22. 10.1111/j.2517-6161.1977.tb01600.x |
2 | von LUXBURG U. A tutorial on spectral clustering [J]. Statistics and Computing, 2007, 17(4): 395-416. 10.1007/s11222-007-9033-z |
3 | AGRAWAL R, GEHRKE J, GUNOPULOS D, et al. Automatic subspace clustering of high dimensional data for data mining applications [C]// Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. New York: ACM, 1998: 94-105. 10.1145/276305.276314 |
4 | STREHL A, GHOSH J. Cluster ensembles — a knowledge reuse framework for combining multiple partitions [J]. Journal of Machine Learning Research, 2002, 3: 583-617. |
5 | XIE J Y, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis [C]// Proceedings of the 2016 33rd International Conference on International Conference on Machine Learning. New York: JMLR.org, 2016: 478-487. |
6 | XIA S Y, PENG D W, MENG D Y, et al. Ball k-means: fast adaptive clustering with no bounds [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 87-99. |
7 | TAYLOR C, GOWANLOCK M. Accelerating the Yinyang k-means algorithm using the GPU [C]// Proceedings of the 2021 IEEE 37th International Conference on Data Engineering. Piscataway: IEEE, 2021: 1835-1840. 10.1109/icde51399.2021.00163 |
8 | TAN P N, STEINBACK M, KARPATNE A, et al. Introduction to Data Mining [M]. 2nd ed. London: Pearson, 2019: 565-570. |
9 | XIE J Y, GAO H C, XIE W X, et al. Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors [J]. Information Sciences, 2016, 354:19-40. 10.1016/j.ins.2016.03.011 |
10 | RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks [J]. Science, 2014, 344(6191): 1492-1496. 10.1126/science.1242072 |
11 | SHI Y, CHEN Z S, QI Z Q, et al. A novel clustering-based image segmentation via density peaks algorithm with mid-level feature [J]. Neural Computing and Applications, 2017, 28(S1): 29-39. 10.1007/s00521-016-2300-1 |
12 | CHEN Y W, LAI D H, QI H, et al. A new method to estimate ages of facial image for large database [J]. Multimedia Tools and Applications, 2016, 75(5): 2877-2895. 10.1007/s11042-015-2485-9 |
13 | ZHANG Y, XIA Y Q, LIU Y, et al. Clustering sentences with density peaks for multi-document summarization [C]// Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2015: 1262-1267. 10.3115/v1/n15-1136 |
14 | DU M J, DING S F, JIA H J. Study on density peaks clustering based on k-nearest neighbors and principal component analysis [J]. Knowledge-Based Systems, 2016, 99: 135-145. 10.1016/j.knosys.2016.02.001 |
15 | 鲍舒婷,孙丽萍,郑孝遥,等.基于共享近邻相似度的密度峰聚类算法[J].计算机应用,2018,38(6):1601-1607. 10.11772/j.issn.1001-9081.2017122898 |
BAO S T, SUN L P, ZHENG X Y, et al. Density peaks clustering algorithm based on shared near neighbors similarity [J]. Journal of Computer Applications, 2018, 38(6): 1601-1607. 10.11772/j.issn.1001-9081.2017122898 | |
16 | GUO Z S, HUANG T Y, CAI Z L, et al. A new local density for density peak clustering [C]// Proceedings of the 2018 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 10939. Cham: Springer, 2018: 426-438. |
17 | 朱庆峰,葛洪伟. K近邻相似度优化的密度峰聚类[J].计算机工程与应用,2019,55(2):148-153,252. 10.3778/j.issn.1002-8331.1710-0059 |
ZHU Q F, GE H W. Density peaks clustering optimized by K nearest neighbor’s similarity [J]. Computer Engineering and Applications, 2019, 55(2): 148-153, 252. 10.3778/j.issn.1002-8331.1710-0059 | |
18 | 邱保志,辛杭.一种基于共享近邻亲和度的聚类算法[J].计算机工程与应用,2018,54(18):184-187,222. 10.3778/j.issn.1002-8331.1705-0401 |
QIU B Z, XIN H. Shared nearest neighbor affinity based clustering algorithm [J]. Computer Engineering and Applications, 2018, 54(18): 184-187, 222. 10.3778/j.issn.1002-8331.1705-0401 | |
19 | 钱雪忠,金辉.自适应聚合策略优化的密度峰值聚类算法[J].计算机科学与探索,2020,14(4):712-720. 10.3778/j.issn.1673-9418.1902022 |
QIAN X Z, JIN H. Optimized density peak clustering algorithm by adaptive aggregation strategy [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(4): 712-720. 10.3778/j.issn.1673-9418.1902022 | |
20 | LIU R, WANG H, YU X M. Shared-nearest-neighbor-based clustering by fast search and find of density peaks [J]. Information Sciences, 2018, 450: 200-226. 10.1016/j.ins.2018.03.031 |
21 | COVER T, HART P. Nearest neighbor pattern classification [J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27. 10.1109/tit.1967.1053964 |
22 | KORN F, MUTHUKRISHNAN S. Influence sets based on reverse nearest neighbor queries [J]. ACM SIGMOD Record, 2000, 29(2): 201-212. 10.1145/335191.335415 |
23 | JARVIS R A, PATRICK E A. Clustering using a similarity measure based on shared near neighbors [J]. IEEE Transactions on Computers, 1973, C-22(11): 1025-1034. 10.1109/t-c.1973.223640 |
24 | FREY B J, DUECK D. Clustering by passing messages between data points [J]. Science, 2007, 315(5814): 972-976. 10.1126/science.1136800 |
25 | VINH N X, EPPS J, BAILEY J. Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance [J]. Journal of Machine Learning Research, 2010, 11: 2837-2854. |
26 | FOWLKES E S, MALLOWS C L. A method for comparing two hierarchical clusterings [J]. Journal of the American Statistical Association, 1983, 78(383): 553-569. 10.1080/01621459.1983.10478008 |
[1] | Jie DU, Yan MA, Hui HUANG. Clustering algorithm based on local gravity and distance [J]. Journal of Computer Applications, 2022, 42(5): 1472-1479. |
[2] | LYU Jia, XIAN Yan. Co-training algorithm combining improved density peak clustering and shared subspace [J]. Journal of Computer Applications, 2021, 41(3): 686-693. |
[3] | HUANG Gong, ZHAO Yongping, XIE Yunlong. Fault detection for turboshaft engine based on local density weighted one-class SVM algorithm [J]. Journal of Computer Applications, 2020, 40(3): 917-924. |
[4] | DU Hangyuan, PEI Xiya, WANG Wenjian. Overlapping community detection algorithm for attributed networks [J]. Journal of Computer Applications, 2019, 39(11): 3151-3157. |
[5] | BAO Shuting, SUN Liping, ZHENG Xiaoyao, GUO Liangmin. Density peaks clustering algorithm based on shared near neighbors similarity [J]. Journal of Computer Applications, 2018, 38(6): 1601-1607. |
[6] | QIU Baozhi, TANG Yamin. Efficient clustering algorithm for fast recognition of density backbone [J]. Journal of Computer Applications, 2017, 37(12): 3482-3486. |
[7] | ZOU Yunfeng, ZHANG Xin, SONG Shiyuan, NI Weiwei. Fast outlier detection algorithm based on local density [J]. Journal of Computer Applications, 2017, 37(10): 2932-2937. |
[8] | GUO Hongshuai, SUN Dianzhu, LI Yanrui, LI Cong. Dynamic spatial index of mesh surface for supporting STL data source [J]. Journal of Computer Applications, 2015, 35(9): 2611-2615. |
[9] | XUE Wen-juan LIU Pei-yu LIU Dong. Improved Chameleon algorithm using weighted nearest neighbors graph [J]. Journal of Computer Applications, 2012, 32(10): 2884-2887. |
[10] | . Nonlinear dimensionality reduction algorithm and application to hospital performance evaluation [J]. Journal of Computer Applications, 2010, 30(4): 1004-1007. |
[11] | . Gridbased shared nearest neighbor clustering algorithm [J]. Journal of Computer Applications, 2006, 26(7): 1673-1675. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||