Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (12): 3816-3823.DOI: 10.11772/j.issn.1001-9081.2022111763
Special Issue: 先进计算
• Advanced computing • Previous Articles Next Articles
Longbao WANG1,2, Yinqi LUAN1, Liang XU3, Xin ZENG3, Shuai ZHANG4, Shufang XU1,2()
Received:
2022-11-28
Revised:
2023-03-26
Accepted:
2023-03-30
Online:
2023-05-08
Published:
2023-12-10
Contact:
Shufang XU
About author:
WANG Longbao, born in 1977, Ph. D., senior engineer. His research interests include domain software, intelligent computing.Supported by:
王龙宝1,2, 栾茵琪1, 徐亮3, 曾昕3, 张帅4, 徐淑芳1,2()
通讯作者:
徐淑芳
作者简介:
王龙宝(1977—),男,江苏盐城人,高级工程师,博士,CCF会员,主要研究方向:领域软件、智能计算基金资助:
CLC Number:
Longbao WANG, Yinqi LUAN, Liang XU, Xin ZENG, Shuai ZHANG, Shufang XU. Route planning method of UAV swarm based on dynamic cluster particle swarm optimization[J]. Journal of Computer Applications, 2023, 43(12): 3816-3823.
王龙宝, 栾茵琪, 徐亮, 曾昕, 张帅, 徐淑芳. 基于动态簇粒子群优化的无人机集群路径规划方法[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3816-3823.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022111763
算法 | 参数 | 描述 | 值 |
---|---|---|---|
PSO | N | 种群数量 | 50 |
学习因子(认知部分) | 2 | ||
学习因子(社会部分) | 2 | ||
惯性权重因子 | 1 | ||
PIO | 种群数量 | 50 | |
地图和指南针影响因子 | 0.3 | ||
SSA | 种群数量 | 50 | |
发现者 | 20 | ||
警觉者 | 10 | ||
DCPSO | 种群数量 | 50 | |
学习因子(认知部分) | 2 | ||
学习因子(社会部分) | 2 | ||
惯性权重因子 | 1 |
Tab.1 Parameters for PSO, PIO, SSA and DCPSO algorithms
算法 | 参数 | 描述 | 值 |
---|---|---|---|
PSO | N | 种群数量 | 50 |
学习因子(认知部分) | 2 | ||
学习因子(社会部分) | 2 | ||
惯性权重因子 | 1 | ||
PIO | 种群数量 | 50 | |
地图和指南针影响因子 | 0.3 | ||
SSA | 种群数量 | 50 | |
发现者 | 20 | ||
警觉者 | 10 | ||
DCPSO | 种群数量 | 50 | |
学习因子(认知部分) | 2 | ||
学习因子(社会部分) | 2 | ||
惯性权重因子 | 1 |
函数名 | 算法 | 最优值 | 平均值 | 方差 | 耗时/s |
---|---|---|---|---|---|
Easom | PSO | -4.286 4×10-5 | -6.061 5×10-6 | 1.302 8×10-5 | 1.651 6 |
PIO | -1.0 | -0.999 9 | 7.266 9×10-6 | 6.731 4 | |
SSA | -0.999 9 | -0.999 9 | 3.888 6×10-7 | 2.064 8 | |
CDPIO | -1.0 | -0.999 9 | 2.879 7×10-17 | — | |
DCPSO | -2.675 2×10-9 | -2.675 2×10-9 | 0 | 13.093 3 | |
Matyas | PSO | 0.015 0 | 0.229 2 | 0.269 8 | 1.360 0 |
PIO | 9.498 9×10-63 | 3.321 0×10-30 | 2.266 6×10-29 | 6.790 1 | |
SSA | 0 | 2.391 7×10-17 | 1.242 0×10-16 | 2.043 6 | |
CDPIO | 1.046 7×10-101 | 2.986 7×10-95 | 2.376 5×10-188 | — | |
DCPSO | 0 | 0 | 0 | 12.866 3 |
Tab.2 Test results of unimodal low-dimensional functions
函数名 | 算法 | 最优值 | 平均值 | 方差 | 耗时/s |
---|---|---|---|---|---|
Easom | PSO | -4.286 4×10-5 | -6.061 5×10-6 | 1.302 8×10-5 | 1.651 6 |
PIO | -1.0 | -0.999 9 | 7.266 9×10-6 | 6.731 4 | |
SSA | -0.999 9 | -0.999 9 | 3.888 6×10-7 | 2.064 8 | |
CDPIO | -1.0 | -0.999 9 | 2.879 7×10-17 | — | |
DCPSO | -2.675 2×10-9 | -2.675 2×10-9 | 0 | 13.093 3 | |
Matyas | PSO | 0.015 0 | 0.229 2 | 0.269 8 | 1.360 0 |
PIO | 9.498 9×10-63 | 3.321 0×10-30 | 2.266 6×10-29 | 6.790 1 | |
SSA | 0 | 2.391 7×10-17 | 1.242 0×10-16 | 2.043 6 | |
CDPIO | 1.046 7×10-101 | 2.986 7×10-95 | 2.376 5×10-188 | — | |
DCPSO | 0 | 0 | 0 | 12.866 3 |
函数名 | 算法 | 最优值 | 平均值 | 方差 | 耗时/s |
---|---|---|---|---|---|
Sumsquares | PSO | 6.675 7×10-6 | 6.892 1×10-6 | 6.67×10-6 | 5.425 6 |
PIO | 1.926 6×10-17 | 6.055 5×10-14 | 3.777 3×10-13 | 9.477 7 | |
SSA | 0 | 4.495 0×10-10 | 1.361 6×10-9 | 3.857 2 | |
DCPSO | 0 | 0 | 0 | 16.247 0 | |
Sphere | PSO | 9.144 3×10-4 | 2.483 7×10-2 | 9.12×10-4 | 14.595 4 |
PIO | 3.147 7×10-24 | 3.644 5×10-21 | 2.820 6×10-20 | 12.703 2 | |
SSA | 0 | 7.332 8×10-8 | 3.411 3×10-7 | 3.310 4 | |
DCPSO | 0 | 0 | 0 | 15.566 5 |
Tab.3 Test results of unimodal high-dimensional functions
函数名 | 算法 | 最优值 | 平均值 | 方差 | 耗时/s |
---|---|---|---|---|---|
Sumsquares | PSO | 6.675 7×10-6 | 6.892 1×10-6 | 6.67×10-6 | 5.425 6 |
PIO | 1.926 6×10-17 | 6.055 5×10-14 | 3.777 3×10-13 | 9.477 7 | |
SSA | 0 | 4.495 0×10-10 | 1.361 6×10-9 | 3.857 2 | |
DCPSO | 0 | 0 | 0 | 16.247 0 | |
Sphere | PSO | 9.144 3×10-4 | 2.483 7×10-2 | 9.12×10-4 | 14.595 4 |
PIO | 3.147 7×10-24 | 3.644 5×10-21 | 2.820 6×10-20 | 12.703 2 | |
SSA | 0 | 7.332 8×10-8 | 3.411 3×10-7 | 3.310 4 | |
DCPSO | 0 | 0 | 0 | 15.566 5 |
函数名 | 算法 | 最优值 | 平均值 | 方差 | 耗时/s |
---|---|---|---|---|---|
Bohachevs-ky1 | PSO | 2.124 7×10-11 | 1.297 5×10-8 | 2.293 5×10-8 | 5.343 8 |
PIO | 0 | 0 | 0 | 9.163 6 | |
SSA | 0 | 1.811 7×10-17 | 5.499 4×10-17 | 3.582 6 | |
CDPIO | 0 | 0 | 0 | — | |
DCPSO | 0 | 0 | 0 | 12.871 4 | |
Eggcrate | PSO | 7.468 4×10-12 | 3.484 2×10-8 | 4.367 4×10-8 | 6.234 7 |
PIO | 9.961 7×10-61 | 3.902 3×10-13 | 3.875 3×10-12 | 8.345 3 | |
SSA | 9.375 7×10-9 | 5.087 9×10-7 | 5.915 2×10-7 | 2.092 5 | |
DCPSO | 0 | 0 | 0 | 12.851 3 | |
Schaffer | PSO | 3.215 4×10-11 | 5.369 7×10-7 | 6.324 7×10-9 | 7.267 4 |
PIO | 0 | 1.811 7×10-14 | 5.337 2×10-14 | 9.655 0 | |
SSA | 0 | 1.690 1×10-13 | 9.099 3×10-13 | 2.114 9 | |
CDPIO | 0 | 0 | 0 | — | |
DCPSO | 0 | 0 | 0 | 12.904 8 | |
Bohachevs-ky3 | PSO | 1.514 8×10-11 | 4.398 2×10-9 | 7.269 4×10-9 | 5.639 8 |
PIO | 0 | 4.440 8×10-18 | 3.222 3×10-17 | 8.161 9 | |
SSA | 0 | 8.173 7×10-11 | 4.400 4×10-10 | 2.190 1 | |
CDPIO | 0 | 0 | 0 | — | |
DCPSO | 0 | 0 | 0 | 13.133 4 |
Tab.4 Test results of multimodal low-dimensional functions
函数名 | 算法 | 最优值 | 平均值 | 方差 | 耗时/s |
---|---|---|---|---|---|
Bohachevs-ky1 | PSO | 2.124 7×10-11 | 1.297 5×10-8 | 2.293 5×10-8 | 5.343 8 |
PIO | 0 | 0 | 0 | 9.163 6 | |
SSA | 0 | 1.811 7×10-17 | 5.499 4×10-17 | 3.582 6 | |
CDPIO | 0 | 0 | 0 | — | |
DCPSO | 0 | 0 | 0 | 12.871 4 | |
Eggcrate | PSO | 7.468 4×10-12 | 3.484 2×10-8 | 4.367 4×10-8 | 6.234 7 |
PIO | 9.961 7×10-61 | 3.902 3×10-13 | 3.875 3×10-12 | 8.345 3 | |
SSA | 9.375 7×10-9 | 5.087 9×10-7 | 5.915 2×10-7 | 2.092 5 | |
DCPSO | 0 | 0 | 0 | 12.851 3 | |
Schaffer | PSO | 3.215 4×10-11 | 5.369 7×10-7 | 6.324 7×10-9 | 7.267 4 |
PIO | 0 | 1.811 7×10-14 | 5.337 2×10-14 | 9.655 0 | |
SSA | 0 | 1.690 1×10-13 | 9.099 3×10-13 | 2.114 9 | |
CDPIO | 0 | 0 | 0 | — | |
DCPSO | 0 | 0 | 0 | 12.904 8 | |
Bohachevs-ky3 | PSO | 1.514 8×10-11 | 4.398 2×10-9 | 7.269 4×10-9 | 5.639 8 |
PIO | 0 | 4.440 8×10-18 | 3.222 3×10-17 | 8.161 9 | |
SSA | 0 | 8.173 7×10-11 | 4.400 4×10-10 | 2.190 1 | |
CDPIO | 0 | 0 | 0 | — | |
DCPSO | 0 | 0 | 0 | 13.133 4 |
函数名 | 算法 | 最优值 | 平均值 | 方差 | 耗时/s |
---|---|---|---|---|---|
Rastrigin | PSO | 63.489 1 | 74.234 6 | 9.116 8 | 24.284 6 |
PIO | 0 | 1.225 6×10-13 | 1.231 9×10-14 | 20.417 8 | |
SSA | 0 | 6.296 3×10-5 | 0.000 2 | 15.781 6 | |
CDPIO | -3.005 4 | -3.005 4 | 0 | — | |
DCPSO | 0 | 0 | 0 | 43.357 3 | |
Ackley | PSO | 2.389 4 | 16.081 6 | 8.514 4 | 70.364 0 |
PIO | 1.325 4×10-10 | 6.737 3×10-10 | 1.060 7×10-9 | 46.840 7 | |
SSA | 4.440 8×10-16 | 1.961 9×10-5 | 0.000 1 | 31.933 4 | |
DCPSO | 4.440 8×10-16 | 4.440 8×10-16 | 0 | 116.100 0 |
Tab.5 Test results of multimodal high-dimensional functions
函数名 | 算法 | 最优值 | 平均值 | 方差 | 耗时/s |
---|---|---|---|---|---|
Rastrigin | PSO | 63.489 1 | 74.234 6 | 9.116 8 | 24.284 6 |
PIO | 0 | 1.225 6×10-13 | 1.231 9×10-14 | 20.417 8 | |
SSA | 0 | 6.296 3×10-5 | 0.000 2 | 15.781 6 | |
CDPIO | -3.005 4 | -3.005 4 | 0 | — | |
DCPSO | 0 | 0 | 0 | 43.357 3 | |
Ackley | PSO | 2.389 4 | 16.081 6 | 8.514 4 | 70.364 0 |
PIO | 1.325 4×10-10 | 6.737 3×10-10 | 1.060 7×10-9 | 46.840 7 | |
SSA | 4.440 8×10-16 | 1.961 9×10-5 | 0.000 1 | 31.933 4 | |
DCPSO | 4.440 8×10-16 | 4.440 8×10-16 | 0 | 116.100 0 |
参数 | 描述 | 值 |
---|---|---|
Larea /km | 飞行区域长度 | 100 |
Warea /km | 飞行区域宽度 | 100 |
Harea /km | 飞行区域高度 | 20 |
Num×Num | 网格数 | 100×100 |
UAVS=[uav1,uav2,uav3,uav4] | 无人机集群 初始坐标 | (10,20,15) |
(20,10,15) | ||
(10,10,15) | ||
(10,15,15) | ||
Obs=[obs1,obs2] | 障碍物中心位置 | (35,40,15) |
(50,50,15) | ||
Obj | 目标点坐标 | (85,80,15) |
φ /(°) | 无人机最大航向角 | 45 |
Tab.6 Experimental parameter setting
参数 | 描述 | 值 |
---|---|---|
Larea /km | 飞行区域长度 | 100 |
Warea /km | 飞行区域宽度 | 100 |
Harea /km | 飞行区域高度 | 20 |
Num×Num | 网格数 | 100×100 |
UAVS=[uav1,uav2,uav3,uav4] | 无人机集群 初始坐标 | (10,20,15) |
(20,10,15) | ||
(10,10,15) | ||
(10,15,15) | ||
Obs=[obs1,obs2] | 障碍物中心位置 | (35,40,15) |
(50,50,15) | ||
Obj | 目标点坐标 | (85,80,15) |
φ /(°) | 无人机最大航向角 | 45 |
序号 | 轨迹长度/km | 序号 | 轨迹长度/km | 序号 | 轨迹长度/km |
---|---|---|---|---|---|
1 | 108.784 7 | 11 | 109.477 1 | 21 | 108.752 3 |
2 | 108.888 3 | 12 | 108.441 6 | 22 | 108.923 8 |
3 | 108.577 6 | 13 | 109.027 4 | 23 | 109.027 4 |
4 | 109.613 2 | 14 | 108.338 0 | 24 | 108.545 2 |
5 | 109.406 1 | 15 | 109.855 8 | 25 | 108.820 3 |
6 | 108.888 3 | 16 | 109.234 5 | 26 | 108.234 5 |
7 | 109.406 1 | 17 | 109.027 4 | 27 | 109.130 9 |
8 | 109.406 1 | 18 | 109.130 9 | 28 | 108.902 5 |
9 | 109.234 5 | 19 | 109.441 6 | 29 | 108.652 5 |
10 | 108.820 3 | 20 | 108.545 2 | 30 | 109.006 0 |
Tab. 7 Results of using DCPSO algorithm to conduct 30 independent repeated experiments
序号 | 轨迹长度/km | 序号 | 轨迹长度/km | 序号 | 轨迹长度/km |
---|---|---|---|---|---|
1 | 108.784 7 | 11 | 109.477 1 | 21 | 108.752 3 |
2 | 108.888 3 | 12 | 108.441 6 | 22 | 108.923 8 |
3 | 108.577 6 | 13 | 109.027 4 | 23 | 109.027 4 |
4 | 109.613 2 | 14 | 108.338 0 | 24 | 108.545 2 |
5 | 109.406 1 | 15 | 109.855 8 | 25 | 108.820 3 |
6 | 108.888 3 | 16 | 109.234 5 | 26 | 108.234 5 |
7 | 109.406 1 | 17 | 109.027 4 | 27 | 109.130 9 |
8 | 109.406 1 | 18 | 109.130 9 | 28 | 108.902 5 |
9 | 109.234 5 | 19 | 109.441 6 | 29 | 108.652 5 |
10 | 108.820 3 | 20 | 108.545 2 | 30 | 109.006 0 |
1 | LYU H, YIN Y. Fast path planning for autonomous ships in restricted waters[J]. Applied Sciences, 2018, 8(12): No.2592. 10.3390/app8122592 |
2 | VOLKAN PEHLIVANOGLU Y. A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV[J]. Aerospace Science and Technology, 2012, 16(1): 47-55. 10.1016/j.ast.2011.02.006 |
3 | XUE J, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science and Control Engineering, 2020, 8(1): 22-34. 10.1080/21642583.2019.1708830 |
4 | DUAN H, QIAO P. Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning[J]. International Journal of Intelligent Computing and Cybernetics, 2014, 7(1): 24-37. 10.1108/ijicc-02-2014-0005 |
5 | BHARNE P K, GULHANE V S, YEWALE S K. Data clustering algorithms based on swarm intelligence[C]// Proceedings of the 3rd International Conference on Electronics Computer Technology. Piscataway: IEEE, 2011: 407-411. 10.1109/icectech.2011.5941931 |
6 | KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of the 1995 International Conference on Neural Networks — Volume 4. Piscataway: IEEE, 1995: 1942-1948. |
7 | 鲁亮亮,代冀阳,应进,等. 基于APSODE-MS算法的无人机航迹规划[J]. 控制与决策, 2022, 37(7):1695-1704. |
LU L L, DAI J Y, YING J, et al. UAV trajectory planning based on APSODE-MS algorithm[J]. Control and Decision, 2022, 37(7): 1695-1704. | |
8 | NAYEEM G M, FAN M, AKHTER Y. A time-varying adaptive inertia weight based modified PSO algorithm for UAV path planning[C]// Proceedings of the 2nd International Conference on Robotics, Electrical and Signal Processing Techniques. Piscataway: IEEE, 2021: 573-576. 10.1109/icrest51555.2021.9331101 |
9 | LI X, ZHAO Y, ZHANG J, et al. A hybrid PSO algorithm based flight path optimization for multiple agricultural UAVs[C]// Proceedings of the IEEE 28th International Conference on Tools with Artificial Intelligence. Piscataway: IEEE, 2016: 691-697. 10.1109/ictai.2016.0110 |
10 | 田兴华,张纪会,李阳. 基于混沌映射的自适应退火型粒子群算法[J]. 复杂系统与复杂性科学, 2020, 17(1):45-54. |
TIAN X H, ZHANG J H, LI Y. An adaptive annealing particle swarm optimization based on chaotic mapping [J]. Complex Systems and Complexity Science, 2020, 17(1): 45-54. | |
11 | ZHANG R, SUN M, PAN C. Micro-nano satellite resource allocation algorithm based on chaos-filled PSO [C]// Proceedings of the 6th International Symposium on Computer and Information Processing Technology. Piscataway: IEEE, 2021: 204-208. 10.1109/iscipt53667.2021.00048 |
12 | KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots [J]. The International Journal of Robotics Research, 1986, 5(1): 90-98. 10.1177/027836498600500106 |
13 | 段海滨,杨之元. 基于柯西变异鸽群优化的大型民用飞机滚动时域控制[J]. 中国科学:技术科学, 2018, 48(3):277-288. 10.1360/n092017-00211 |
DUAN H B, ZHANG Z Y. Large civil aircraft receding horizon control based on Cauthy mutation pigeon inspired optimization [J]. SCIENTIA SINICA Technologica, 2018, 48(3): 277-288. 10.1360/n092017-00211 | |
14 | LIANG X, WANG D, HUANG M. Improved grey wolf optimizer and their applications[C]// Proceedings of the IEEE 7th International Conference on Computer Science and Network Technology. Piscataway: IEEE, 2019: 107-110. 10.1109/iccsnt47585.2019.8962504 |
15 | XU S, XU D, MAO Y, et al. A cooperative dynamic cluster in multitasking mobile networks [J]. Intelligent Automation and Soft Computing, 2017, 23(4): 567-572. 10.1080/10798587.2017.1316079 |
16 | LI L, XU S, NIE H, et al. Collaborative target search algorithm for UAV based on chaotic disturbance pigeon-inspired optimization[J]. Applied Sciences, 2021, 11(16): No.7358. 10.3390/app11167358 |
[1] | Peigen GAO, Bin SUO. Experimental design and staged PSO-Kriging modeling based on weighted hesitant fuzzy set [J]. Journal of Computer Applications, 2024, 44(7): 2144-2150. |
[2] | Xiaoxin DU, Wei ZHOU, Hao WANG, Tianru HAO, Zhenfei WANG, Mei JIN, Jianfei ZHANG. Survey of subgroup optimization strategies for intelligent algorithms [J]. Journal of Computer Applications, 2024, 44(3): 819-830. |
[3] | Jian SUN, Baoquan MA, Zhuiwei WU, Xiaohuan YANG, Tao WU, Pan CHEN. Joint optimization of UAV swarm path planning and task allocation balance in earthquake scenarios [J]. Journal of Computer Applications, 2024, 44(10): 3232-3239. |
[4] | Jun LIANG, Zehong HONG, Songsen YU. Image segmentation model based on improved particle swarm optimization algorithm and genetic mutation [J]. Journal of Computer Applications, 2023, 43(6): 1743-1749. |
[5] | Zhihui GAO, Meng HAN, Shujuan LIU, Ang LI, Dongliang MU. Survey of high utility itemset mining methods based on intelligent optimization algorithm [J]. Journal of Computer Applications, 2023, 43(6): 1676-1686. |
[6] | Zhenhua YU, Zhengqi LIU, Ying LIU, Cheng GUO. Feature selection method based on self-adaptive hybrid particle swarm optimization for software defect prediction [J]. Journal of Computer Applications, 2023, 43(4): 1206-1213. |
[7] | Feng XIANG, Zhongzhi LI, Xi XIONG, Binyong LI. Inverse distance weight interpolation algorithm based on particle swarm local optimization [J]. Journal of Computer Applications, 2023, 43(2): 385-390. |
[8] | Xuesen MA, Xuemei XU, Gonghui JIANG, Yan QIAO, Tianbao ZHOU. Hybrid adaptive particle swarm optimization algorithm for workflow scheduling [J]. Journal of Computer Applications, 2023, 43(2): 474-483. |
[9] | Chunfeng LIU, Zheng LI, Jufeng WANG. Multi-objective optimization of minicells in distributed factories [J]. Journal of Computer Applications, 2023, 43(12): 3824-3832. |
[10] | Bing GAO, Ya ZHENG, Jing QIN, Qijie ZOU, Zumin WANG. Network intrusion detection algorithm based on sparrow search algorithm and improved particle swarm optimization algorithm [J]. Journal of Computer Applications, 2022, 42(4): 1201-1206. |
[11] | Fangxin NIE, Yujia WANG, Xin JIA. Teaching and learning information interactive particle swarm optimization algorithm [J]. Journal of Computer Applications, 2022, 42(3): 874-882. |
[12] | Jing ZHANG, Aihong ZHU. Optimization method of automatic train operation speed curve based on genetic algorithm and particle swarm optimization [J]. Journal of Computer Applications, 2022, 42(2): 599-605. |
[13] | ZHANG Wenqiang, XING Zheng, YANG Weidong. Hybrid particle swarm optimization with multi-region sampling strategy to solve multi-objective flexible job-shop scheduling problem [J]. Journal of Computer Applications, 2021, 41(8): 2249-2257. |
[14] | ZHANG Meng, GUO Jianquan. Channel structure choice of closed-loop supply chain under uncertain demand and recovery [J]. Journal of Computer Applications, 2021, 41(7): 2100-2107. |
[15] | TANG Yanqiang, LI Chenghai, SONG Yafei. Network security situation prediction based on improved particle swarm optimization and extreme learning machine [J]. Journal of Computer Applications, 2021, 41(3): 768-773. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||