Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (2): 507-513.DOI: 10.11772/j.issn.1001-9081.2021122081
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Qing JIA(), Laihua WANG, Weisheng WANG
Received:
2021-12-09
Revised:
2022-04-13
Accepted:
2022-05-13
Online:
2022-06-13
Published:
2023-02-10
Contact:
Qing JIA
About author:
WANG Laihua, born in 1988, Ph. D., associate professor. Her research interests include digital image processing, video anomaly detection.Supported by:
通讯作者:
贾晴
作者简介:
王来花(1988—),女,山东聊城人,副教授,博士,主要研究方向:数字图像处理、视频异常检测基金资助:
CLC Number:
Qing JIA, Laihua WANG, Weisheng WANG. Anomaly detection in video via independently recurrent neural network and variational autoencoder network[J]. Journal of Computer Applications, 2023, 43(2): 507-513.
贾晴, 王来花, 王伟胜. 基于独立循环神经网络与变分自编码网络的视频帧异常检测[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 507-513.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021122081
方法 | 类型 | Ped1 | Ped2 | Avenue | |||
---|---|---|---|---|---|---|---|
AUC | EER | AUC | EER | AUC | EER | ||
Conv-AE[ | 帧重构 | 75.0 | 27.9 | 85.0 | 21.7 | 80.0 | 23.0 |
Unmask[ | 帧重构 | 68.4 | — | 82.2 | — | 80.6 | — |
FP [ | 帧预测 | 83.1 | — | 95.4 | — | 84.9 | — |
AD[ | 帧预测 | 83.9 | — | 96.0 | — | 86.0 | — |
GMFC-VAE[ | 帧重构 | 94.9 | 11.3 | 92.2 | 12.6 | 83.4 | 22.7 |
R-STAE[ | 帧重构 | — | — | 83.0 | — | 82.0 | — |
R-VAE[ | 帧重构 | 75.0 | 32.4 | 91.0 | 15.5 | 79.6 | 27.5 |
本文方法 | 帧预测 | 84.3 | 22.7 | 96.2 | 8.8 | 86.6 | 19.0 |
Tab. 1 AUC value and EER value comparison of related abnormal detection methods
方法 | 类型 | Ped1 | Ped2 | Avenue | |||
---|---|---|---|---|---|---|---|
AUC | EER | AUC | EER | AUC | EER | ||
Conv-AE[ | 帧重构 | 75.0 | 27.9 | 85.0 | 21.7 | 80.0 | 23.0 |
Unmask[ | 帧重构 | 68.4 | — | 82.2 | — | 80.6 | — |
FP [ | 帧预测 | 83.1 | — | 95.4 | — | 84.9 | — |
AD[ | 帧预测 | 83.9 | — | 96.0 | — | 86.0 | — |
GMFC-VAE[ | 帧重构 | 94.9 | 11.3 | 92.2 | 12.6 | 83.4 | 22.7 |
R-STAE[ | 帧重构 | — | — | 83.0 | — | 82.0 | — |
R-VAE[ | 帧重构 | 75.0 | 32.4 | 91.0 | 15.5 | 79.6 | 27.5 |
本文方法 | 帧预测 | 84.3 | 22.7 | 96.2 | 8.8 | 86.6 | 19.0 |
方法 | FPS | 方法 | FPS |
---|---|---|---|
Unmask[ | 20 | R-STAE[ | 14 |
FP[ | 25 | 本文方法 | 28 |
Tab. 2 Time performance comparison of related abnormal detection methods
方法 | FPS | 方法 | FPS |
---|---|---|---|
Unmask[ | 20 | R-STAE[ | 14 |
FP[ | 25 | 本文方法 | 28 |
方法 | Ped1 | Ped2 | Avenue |
---|---|---|---|
Conv-AE[ | 0.243 | 0.384 | 0.256 |
FP [ | 0.259 | 0.469 | 0.275 |
本文方法 | 0.263 | 0.497 | 0.293 |
Tab. 3 Difference value ΔS comparison on different datasets
方法 | Ped1 | Ped2 | Avenue |
---|---|---|---|
Conv-AE[ | 0.243 | 0.384 | 0.256 |
FP [ | 0.259 | 0.469 | 0.275 |
本文方法 | 0.263 | 0.497 | 0.293 |
方法 | AUC | EER |
---|---|---|
Base | 94.0 | 12.4 |
Base+IndRNN | 95.6 | 10.9 |
Base+IndRNN+GAN | 96.2 | 8.8 |
Tab. 4 Performance of different module combinations in network
方法 | AUC | EER |
---|---|---|
Base | 94.0 | 12.4 |
Base+IndRNN | 95.6 | 10.9 |
Base+IndRNN+GAN | 96.2 | 8.8 |
损失函数 | AUC |
---|---|
梯度损失+多尺度结构相似性损失 | 93.9 |
梯度损失+混合损失 | 95.9 |
梯度损失+混合损失+全变分损失 | 96.2 |
Tab. 5 Performance of different loss functions combinations in network
损失函数 | AUC |
---|---|
梯度损失+多尺度结构相似性损失 | 93.9 |
梯度损失+混合损失 | 95.9 |
梯度损失+混合损失+全变分损失 | 96.2 |
1 | 胡正平,张乐,李淑芳,等. 视频监控系统异常目标检测与定位综述[J]. 燕山大学学报, 2019, 43(1): 1-12. 10.3969/j.issn.1007-791X.2019.01.001 |
HU Z P, ZHANG L, LI S F, et al. Review of abnormal behavior detection and location for intelligent video surveillance systems[J]. Journal of Yanshan University, 2019, 43(1): 1-12. 10.3969/j.issn.1007-791X.2019.01.001 | |
2 | 郑併斌,范新南,李敏,等. 基于轨迹分段LDA主题模型的视频异常行为检测方法[J]. 计算机应用, 2015, 35(2):515-518, 565. 10.11772/j.issn.1001-9081.2015.02.0515 |
ZHENG B B, FAN X N, LI M, et al. Trajectory segment-based abnormal behavior detection method using LDA model[J]. Journal of Computer Applications, 2015, 35(2):515-518, 565. 10.11772/j.issn.1001-9081.2015.02.0515 | |
3 | DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 1. Piscataway: IEEE, 2005: 886-893. 10.1109/cvpr.2005.4 |
4 | DALAL N, TRIGGS B, SCHMID C. Human detection using oriented histograms of flow and appearance[C]// Proceedings of the 2006 European Conference on Computer Vision, LNCS 3952. Berlin: Springer, 2006: 428-441. |
5 | CHAN A B, Modeling VASCONCELOS N., clustering, and segmenting video with mixtures of dynamic textures[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(5):909-926. 10.1109/tpami.2007.70738 |
6 | MEHRAN R, OYAMA A, SHAH M. Abnormal crowd behavior detection using social force model[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 935-942. 10.1109/cvpr.2009.5206641 |
7 | 李敏,刘轲,罗惠琼,等. 基于混合高斯模型的异常检测算法改进[J].计算机应用与软件, 2014, 31(6): 198-200. 10.3969/j.issn.1000-386x.2014.06.054 |
LI M, LIU K, LUO H Q, et al. Anomaly detection algorithm improvement based on Gaussian mixture model[J]. Computer Applications and Software, 2014, 31(6): 198-200. 10.3969/j.issn.1000-386x.2014.06.054 | |
8 | 徐涛,田崇阳,刘才华. 基于深度学习的人群异常行为检测综述[J]. 计算机科学, 2021, 48(9): 125-134. 10.11896/jsjkx.201100015 |
XU T, TIAN C Y, LIU C H. Deep learning for abnormal crowd behavior detection: a review[J]. Computer Science, 2021, 48(9): 125-134. 10.11896/jsjkx.201100015 | |
9 | HASAN M, CHOI J, NEUMANN J, et al. Learning temporal regularity in video sequences[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 733-742. 10.1109/cvpr.2016.86 |
10 | IONESCU R, SMEUREANU S, ALEXE B, et al. Unmasking the abnormal events in video[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2914-2922. 10.1109/iccv.2017.315 |
11 | LIU W, LUO W X, LIAN D Z, et al. Future frame prediction for anomaly detection — a new baseline[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6536-6545. 10.1109/cvpr.2018.00684 |
12 | ZHOU J T, ZHANG L, FANG Z W, et al. Attention-driven loss for anomaly detection in video surveillance[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(12): 4639-4647. 10.1109/tcsvt.2019.2962229 |
13 | FAN Y X, WEN G J, LI D R, et al. Video anomaly detection and localization via Gaussian mixture fully convolutional variational autoencoder[J]. Computer Vision and Image Understanding, 2020, 195: No.102920. 10.1016/j.cviu.2020.102920 |
14 | DEEPAK K, CHANDRAKALA S, MOHAN C K. Residual spatiotemporal autoencoder for unsupervised video anomaly detection[J]. Signal, Image and Video Processing, 2021, 15(1): 215-222. 10.1007/s11760-020-01740-1 |
15 | NAWARATNE R, ALAHAKOON D, DE SILVA D, et al. Spatiotemporal anomaly detection using deep learning for real-time video surveillance[J]. IEEE Transactions on Industrial Informatics, 2020, 16(1): 393-402. 10.1109/tii.2019.2938527 |
16 | YAN S Y, SMITH J S, LU W J, et al. Abnormal event detection from videos using a two-stream recurrent variational autoencoder[J]. IEEE Transactions on Cognitive and Developmental Systems, 2020, 12(1): 30-42. 10.1109/tcds.2018.2883368 |
17 | LI S, LI W Q, COOK C, et al. Independently Recurrent Neural Network (IndRNN): building a longer and deeper RNN[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5457-5466. 10.1109/cvpr.2018.00572 |
18 | KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. (2014-05-01) [2021-11-01].. 10.1561/2200000056 |
19 | MAKHZANI A, SHLENS J, JAITLY N, et al. Adversarial autoencoders[EB/OL]. (2016-05-25) [2021-11-01].. |
20 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. Cambridge: MIT Press, 2014: 2672-2680. |
21 | MAHENDRAN A, VEDALDI A. Understanding deep image representations by inverting them[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 5188-5196. 10.1109/cvpr.2015.7299155 |
[1] | Xin YANG, Xueni CHEN, Chunjiang WU, Shijie ZHOU. Short-term traffic flow prediction of urban highway based on variant residual model and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2947-2951. |
[2] | Shuai FU, Xiaoying GUO, Ruyi BAI, Tao YAN, Bin CHEN. Age estimation method combining improved CloFormer model and ordinal regression [J]. Journal of Computer Applications, 2024, 44(8): 2372-2380. |
[3] | Tong CHEN, Fengyu YANG, Yu XIONG, Hong YAN, Fuxing QIU. Construction method of voiceprint library based on multi-scale frequency-channel attention fusion [J]. Journal of Computer Applications, 2024, 44(8): 2407-2413. |
[4] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[5] | Wudan LONG, Bo PENG, Jie HU, Ying SHEN, Danni DING. Road damage detection algorithm based on enhanced feature extraction [J]. Journal of Computer Applications, 2024, 44(7): 2264-2270. |
[6] | Ruihua LIU, Zihe HAO, Yangyang ZOU. Gait recognition algorithm based on multi-layer refined feature fusion [J]. Journal of Computer Applications, 2024, 44(7): 2250-2257. |
[7] | Zhihao WU, Ziqiu CHI, Ting XIAO, Zhe WANG. Meta-learning adaption for few-shot text-to-speech [J]. Journal of Computer Applications, 2024, 44(5): 1629-1635. |
[8] | Zongyu LI, Siwei QIANG, Xiaobo GUO, Zhenfeng ZHU. Re-weighted adversarial variational autoencoder and its application in industrial causal effect estimation [J]. Journal of Computer Applications, 2024, 44(4): 1099-1106. |
[9] | Chenhui CUI, Suzhen LIN, Dawei LI, Xiaofei LU, Jie WU. Infrared dim small target tracking method based on Siamese network and Transformer [J]. Journal of Computer Applications, 2024, 44(2): 563-571. |
[10] | Wenjie YAN, Dongyue DANG. Broad quantum state tomography model based on adaptive feature extraction [J]. Journal of Computer Applications, 2024, 44(12): 3861-3866. |
[11] | Tao LIU, Shihong JU, Yimeng GAO. Small object detection algorithm from drone perspective based on improved YOLOv8n [J]. Journal of Computer Applications, 2024, 44(11): 3603-3609. |
[12] | Yiyang FAN, Yang ZHANG, Shang ZENG, Yu ZENG, Maoli FU. Multivariate long-term series forecasting model based on decomposition and frequency domain feature extraction [J]. Journal of Computer Applications, 2024, 44(11): 3442-3448. |
[13] | Pei ZHAO, Yan QIAO, Rongyao HU, Xinyu YUAN, Minyue LI, Benchu ZHANG. Multivariate time series anomaly detection based on multi-domain feature extraction [J]. Journal of Computer Applications, 2024, 44(11): 3419-3426. |
[14] | Xiaoyu HUA, Dongfen LI, You FU, Kejun BI, Shi YING, Ruijin WANG. Industrial chain risk assessment and early warning model combining hierarchical graph neural network and long short-term memory [J]. Journal of Computer Applications, 2024, 44(10): 3223-3231. |
[15] | Mu LI, Yuheng YANG, Xizheng KE. Emotion recognition model based on hybrid-mel gama frequency cross-attention transformer modal [J]. Journal of Computer Applications, 2024, 44(1): 86-93. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||