Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (4): 1043-1049.DOI: 10.11772/j.issn.1001-9081.2022040481
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Hao SUN1,2(), Jian CAO1,2, Haisheng LI1,2, Dianhui MAO1,2
Received:
2022-04-14
Revised:
2022-08-02
Accepted:
2022-08-03
Online:
2022-09-27
Published:
2023-04-10
Contact:
Hao SUN
About author:
CAO Jian, born in 1982, Ph. D., associate professor. His research interests include machine learning, image processing.Supported by:
孙浩1,2(), 曹健1,2, 李海生1,2, 毛典辉1,2
通讯作者:
孙浩
作者简介:
曹健(1982—),男,山东临沂人,副教授,博士,主要研究方向:机器学习、图像处理;基金资助:
CLC Number:
Hao SUN, Jian CAO, Haisheng LI, Dianhui MAO. Session-based recommendation model based on enhanced capsule network[J]. Journal of Computer Applications, 2023, 43(4): 1043-1049.
孙浩, 曹健, 李海生, 毛典辉. 基于改进胶囊网络的会话型推荐模型[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1043-1049.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022040481
数据集 | 点击数 | 会话数 | 物品数 | |
---|---|---|---|---|
训练集 | 测试集 | |||
Yoochoose 1/64 | 557 248 | 369 859 | 55 898 | 16 766 |
Diginetica | 982 961 | 719 470 | 60 858 | 43 097 |
Tab. 1 Dataset statistics
数据集 | 点击数 | 会话数 | 物品数 | |
---|---|---|---|---|
训练集 | 测试集 | |||
Yoochoose 1/64 | 557 248 | 369 859 | 55 898 | 16 766 |
Diginetica | 982 961 | 719 470 | 60 858 | 43 097 |
模型 | Yoochoose 1/64 | Diginetica | ||
---|---|---|---|---|
R@20 | MRR@20 | R@20 | MRR@20 | |
Item-KNN | 51.60 | 21.81 | 35.75 | 11.57 |
GRU4Rec | 60.64 | 22.89 | 29.45 | 8.33 |
NARM | 68.32 | 28.63 | 49.70 | 16.17 |
STAMP | 68.74 | 29.67 | 45.64 | 14.32 |
SR-GNN | 70.57 | 30.94 | 50.73 | 17.59 |
GC-SAN | 69.64 | 29.85 | 49.12 | 15.44 |
TAGNN | 71.02 | 31.12 | 51.31 | 18.03 |
LESSR | 70.64 | 30.97 | 51.71 | 18.15 |
SR-ECN | 71.56 | 31.42 | 52.07 | 18.12 |
Tab. 2 Performance comparison of the proposed model and baseline models
模型 | Yoochoose 1/64 | Diginetica | ||
---|---|---|---|---|
R@20 | MRR@20 | R@20 | MRR@20 | |
Item-KNN | 51.60 | 21.81 | 35.75 | 11.57 |
GRU4Rec | 60.64 | 22.89 | 29.45 | 8.33 |
NARM | 68.32 | 28.63 | 49.70 | 16.17 |
STAMP | 68.74 | 29.67 | 45.64 | 14.32 |
SR-GNN | 70.57 | 30.94 | 50.73 | 17.59 |
GC-SAN | 69.64 | 29.85 | 49.12 | 15.44 |
TAGNN | 71.02 | 31.12 | 51.31 | 18.03 |
LESSR | 70.64 | 30.97 | 51.71 | 18.15 |
SR-ECN | 71.56 | 31.42 | 52.07 | 18.12 |
模型 | Yoochoose 1/64 | Diginetica | ||
---|---|---|---|---|
R@20 | MRR@20 | R@20 | MRR@20 | |
SR-ECN_baseCapsule | 70.62 | 30.34 | 50.39 | 17.21 |
SR-ECN_baseAttention | 69.15 | 29.61 | 49.01 | 15.27 |
SR-ECN | 71.56 | 31.42 | 52.07 | 18.12 |
Tab. 3 Performance comparison of SR-ECN model and its variants in ablation study
模型 | Yoochoose 1/64 | Diginetica | ||
---|---|---|---|---|
R@20 | MRR@20 | R@20 | MRR@20 | |
SR-ECN_baseCapsule | 70.62 | 30.34 | 50.39 | 17.21 |
SR-ECN_baseAttention | 69.15 | 29.61 | 49.01 | 15.27 |
SR-ECN | 71.56 | 31.42 | 52.07 | 18.12 |
1 | HU Y F, KOREN Y, VOLINSKY C. Collaborative filtering for implicit feedback datasets[C]// Proceedings of the 8th IEEE International Conference on Data Mining. Piscataway: IEEE, 2008: 263-272. 10.1109/icdm.2008.22 |
2 | KOREN Y. Factorization meets the neighborhood: a multifaceted collaborative filtering model[C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2008: 426-434. 10.1145/1401890.1401944 |
3 | KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37. 10.1109/mc.2009.263 |
4 | CHEN C L, CHANG C H. Evaluation of session-based recommendation systems for social networks[C]// Proceedings of the IEEE 13th International Conference on Data Mining Workshops. Piscataway: IEEE, 2013: 758-765. 10.1109/icdmw.2013.86 |
5 | LAMBRIX P, KALIYAPERUMAL R. A session-based approach for aligning large ontologies[C]// Proceedings of the 2013 Extended Semantic Web Conference, LNCS 7882. Berlin: Springer, 2013: 46-60. |
6 | CHEN C L, CHANG C H. Session-based recommendation — case study on Tencent Weibo[C]// Proceedings of the 2013 Conference on Technologies and Applications of Artificial Intelligence. Piscataway: IEEE, 2013: 205-210. 10.1109/taai.2013.49 |
7 | RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]// Proceedings of the 19th International Conference on World Wide Web. New York: ACM, 2010: 811-820. 10.1145/1772690.1772773 |
8 | WANG P F, GUO J F, LAN Y Y, et al. Learning hierarchical representation model for next basket recommendation[C]// Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2015: 403-412. 10.1145/2766462.2767694 |
9 | HE R N, McAULEY J. Fusing similarity models with Markov chains for sparse sequential recommendation[C]// Proceedings of the IEEE 16th International Conference on Data Mining. Piscataway: IEEE, 2016: 191-200. 10.1109/icdm.2016.0030 |
10 | LeCUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. 10.1038/nature14539 |
11 | 陈聪,张伟,王骏. 带有时间预测辅助任务的会话式序列推荐[J]. 计算机学报, 2021, 44(9):1841-1853. 10.11897/SP.J.1016.2021.01841 |
CHEN C, ZHANG W, WANG J. Session-based sequential recommendation with auxiliary time prediction[J]. Chinese Journal of Computers, 2021, 44(9):1841-1853. 10.11897/SP.J.1016.2021.01841 | |
12 | WANG S J, CAO L B, WANG Y, et al. A survey on session-based recommender systems[J]. ACM Computing Surveys, 2022, 54(7): No.154. 10.1145/3465401 |
13 | SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 3859-3869. |
14 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. |
15 | HE X N, ZHANG H W, KAN M Y, et al. Fast matrix factorization for online recommendation with implicit feedback[C]// Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2016: 549-558. 10.1145/2911451.2911489 |
16 | SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]// Proceedings of the 10th International Conference on World Wide Web. New York: ACM, 2001: 285-295. 10.1145/371920.372071 |
17 | BONNIN G, JANNACH D. Automated generation of music playlists: survey and experiments[J]. ACM Computing Surveys, 2015, 47(2): No.26. 10.1145/2652481 |
18 | HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[EB/OL]. (2016-03-29) [2020-03-14].. |
19 | LI J, REN P J, CHEN Z M, et al. Neural attentive session-based recommendation[C]// Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York: ACM, 2017: 1419-1428. 10.1145/3132847.3132926 |
20 | KANG W C, McAULEY J. Self-attentive sequential recommendation[C]// Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 197-206. 10.1109/icdm.2018.00035 |
21 | LIU Q, ZENG Y F, MOKHOSI R, et al. STAMP: short-term attention/memory priority model for session-based recommendation[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1831-1839. 10.1145/3219819.3219950 |
22 | SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80. 10.1109/tnn.2008.2005605 |
23 | GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 1263-1272. |
24 | FOUT A, BYRD J, SHARIAT B, et al. Protein interface prediction using graph convolutional networks[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6533-6542. |
25 | XU C F, ZHAO P P, LIU Y C, et al. Graph contextualized self-attention network for session-based recommendation[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 3940-3946. 10.24963/ijcai.2019/547 |
26 | 曾义夫,牟其林,周乐,等. 基于图表示学习的会话感知推荐模型[J]. 计算机研究与发展, 2020, 57(3):590-603. 10.7544/issn1000-1239.2020.20190188 |
ZENG Y F, MU Q L, ZHOU L, et al. Graph embedding based session perception model for next-click recommendation[J]. Journal of Computer Research and Development, 2020, 57(3): 590-603. 10.7544/issn1000-1239.2020.20190188 | |
27 | 南宁,杨程屹,武志昊. 基于多图神经网络的会话感知推荐模型[J]. 计算机应用, 2021, 41(2):330-336. 10.11772/j.issn.1001-9081.2020060805 |
NAN N, YANG C Y, WU Z H. Multi-graph neural network-based session perception recommendation model[J]. Journal of Computer Applications, 2021, 41(2):330-336. 10.11772/j.issn.1001-9081.2020060805 | |
28 | 胡承佐,王庆梅,李迪超,等. 基于复杂结构信息的图神经网络序列推荐算法[J]. 计算机工程, 2022, 48(5):82-90, 97. |
HU C Z, WANG Q M, LI D C, et al. Sequence recommendation algorithm of graph neural networks based on complex structure information[J]. Computer Engineering, 2022, 48(5):82-90, 97. | |
29 | 何倩倩,孙静宇,曾亚竹. 基于邻域感知图神经网络的会话推荐[J]. 计算机工程与应用, 2022, 58(9):107-115. 10.3778/j.issn.1002-8331.2105-0241 |
HE Q Q, SUN J Y, ZENG Y Z. Neighborhood awareness graph neural networks for session-based recommendation[J]. Computer Engineering and Applications, 2022, 58(9):107-115. 10.3778/j.issn.1002-8331.2105-0241 | |
30 | WU S, TANG Y Y, ZHU Y Q, et al. Session-based recommendation with graph neural networks[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 346-353. 10.1609/aaai.v33i01.3301346 |
31 | YING R, HE R N, CHEN K F, et al. Graph convolutional neural networks for web-scale recommender systems[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 974-983. 10.1145/3219819.3219890 |
32 | YU F, ZHU Y Q, LIU Q, et al. TAGNN: target attentive graph neural networks for session-based recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1921-1924. 10.1145/3397271.3401319 |
33 | HINTON G E, KRIZHEVSKY A, WANG S D. Transforming auto-encoders[C]// Proceedings of the 2011 International Conference on Artificial Neural Networks, LNCS 6791. Berlin: Springer, 2011: 44-51. |
34 | ZHANG X Y, CHEN L H. Capsule graph neural network[EB/OL]. (2022-02-10) [2020-03-14].. |
35 | 高铭蔚,桑楠,杨茂林. 基于胶囊网络的交互式网络电视视频点播推荐模型[J]. 计算机应用, 2021, 41(11):3171-3177. 10.11772/j.issn.1001-9081.2021010047 |
GAO M W, SANG N, YANG M L. IPTV video-on-demand recommendation model based on capsule network[J]. Journal of Computer Applications, 2021, 41(11):3171-3177. 10.11772/j.issn.1001-9081.2021010047 | |
36 | LIU P Z, YU W. CapsRec: a capsule graph neural network model for social recommendation[C]// Proceedings of the IEEE 33rd International Conference on Tools with Artificial Intelligence. Piscataway: IEEE, 2021: 359-363. 10.1109/ictai52525.2021.00058 |
37 | LIANG T T, XIA C Y, YIN Y Y, et al. Joint training capsule network for cold start recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1769-1772. 10.1145/3397271.3401243 |
38 | LI C L, QUAN C, PENG L, et al. A capsule network for recommendation and explaining what you like and dislike[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 275-284. 10.1145/3331184.3331216 |
39 | TAN Y K, XU X X, LIU Y. Improved recurrent neural networks for session-based recommendations[C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York: ACM, 2016: 17-22. 10.1145/2988450.2988452 |
40 | CHEN T W, WONG R C W. Handling information loss of graph neural networks for session-based recommendation[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 1172-1180. 10.1145/3394486.3403170 |
[1] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[4] | Hang YANG, Wanggen LI, Gensheng ZHANG, Zhige WANG, Xin KAI. Multi-layer information interactive fusion algorithm based on graph neural network for session-based recommendation [J]. Journal of Computer Applications, 2024, 44(9): 2719-2725. |
[5] | Tingjie TANG, Jiajin HUANG, Jin QIN, Hui LU. Session-based recommendation based on graph co-occurrence enhanced multi-layer perceptron [J]. Journal of Computer Applications, 2024, 44(8): 2357-2364. |
[6] | Xinrui LIN, Xiaofei WANG, Yan ZHU. Academic anomaly citation group detection based on local extended community detection [J]. Journal of Computer Applications, 2024, 44(6): 1855-1861. |
[7] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. |
[8] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. |
[9] | Rong HUANG, Junjie SONG, Shubo ZHOU, Hao LIU. Image aesthetic quality evaluation method based on self-supervised vision Transformer [J]. Journal of Computer Applications, 2024, 44(4): 1269-1276. |
[10] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
[11] | Dapeng XU, Xinmin HOU. Feature selection method for graph neural network based on network architecture design [J]. Journal of Computer Applications, 2024, 44(3): 663-670. |
[12] | Ziqi HUANG, Jianpeng HU. Entity category enhanced nested named entity recognition in automotive domain [J]. Journal of Computer Applications, 2024, 44(2): 377-384. |
[13] | Xinran LUO, Tianrui LI, Zhen JIA. Chinese medical named entity recognition based on self-attention mechanism and lexicon enhancement [J]. Journal of Computer Applications, 2024, 44(2): 385-392. |
[14] | Liqing QIU, Xiaopan SU. Personalized multi-layer interest extraction click-through rate prediction model [J]. Journal of Computer Applications, 2024, 44(11): 3411-3418. |
[15] | Li ZENG, Jingru YANG, Gang HUANG, Xiang JING, Chaoran LUO. Survey on hypergraph application methods: issues, advances, and challenges [J]. Journal of Computer Applications, 2024, 44(11): 3315-3326. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||